Use AnySequence and anyGenerator in combination - swift

Another question asked, essentially, how to implement a take function which would return the first n elements of a sequence. My answer was:
struct TakeFromSequenceSequence<S:SequenceType> : SequenceType {
var limit : Int
var sequence : S
func generate() -> AnyGenerator<S.Generator.Element> {
var generator = sequence.generate()
var limit = self.limit
return anyGenerator {
guard limit > 0 else {
return nil
}
limit = limit - 1
return generator.next()
}
}
}
extension SequenceType {
func take(count:Int) -> TakeFromSequenceSequence<Self> {
return TakeFromSequenceSequence(limit: count, sequence: self)
}
}
but it seems like I ought to be able to use AnySequence and anyGenerator to do it all inline in my take function:
extension SequenceType {
func take(count:Int) -> AnySequence<Self.Generator.Element> {
// cannot invoke initializer for type 'AnySequence<_>' with an argument list of type '(() -> _)'
return AnySequence({
var generator = self.generate()
var limit = count
// cannot invoke 'anyGenerator' with an argument list of type '(() -> _)'
return anyGenerator({
guard limit > 0 else {
return nil
}
limit = limit - 1
return generator.next()
})
})
}
}
Unfortunately, this yields multiple typing errors, mostly (I think) because type inference is failing.
Anybody have any suggestions on how to get this (using AnySequence and anyGenerator inline) to work?

(The answer is now based on Swift 2.2/Xcode 7.3. A solution for Swift 2.1 can be found in the edit history.)
The type of the closure passed to the AnySequence init method
must be specified explicitly:
extension SequenceType {
func take(count:Int) -> AnySequence<Generator.Element> {
return AnySequence { () -> AnyGenerator<Generator.Element> in
var generator = self.generate()
var limit = count
return AnyGenerator {
guard limit > 0 else {
return nil
}
limit = limit - 1
return generator.next()
}
}
}
}
Note that the (redundant) Self. in Self.Generator.Element is omitted, otherwise it does not compile.
Example:
let sequence = [1,2,3,4,5].take(2)
print(Array(sequence)) // [1, 2]
print(Array(sequence)) // [1, 2]
Alternatively, the method can be defined as
extension SequenceType {
func take(count:Int) -> AnySequence<Generator.Element> {
var generator = self.generate()
var limit = count
return AnySequence {
return AnyGenerator {
guard limit > 0 else {
return nil
}
limit = limit - 1
return generator.next()
}
}
}
}
Now the closure passed to the AnySequence init method is a "single-expression closure" and the type is inferred by the compiler.
But – as David Berry noted – the created sequence then behaves differently, the generate() method cannot be called repeatedly
with identical results:
let sequenceX = [1,2,3,4,5].take(2)
print(Array(sequenceX)) // [1, 2]
print(Array(sequenceX)) // []
This is permitted behavior, as stated in the SequenceType protocol reference:
... It is not correct to assume that a sequence will either be
"consumable" and will resume iteration, or that a sequence is a
collection and will restart iteration from the first element. A
conforming sequence that is not a collection is allowed to produce an
arbitrary sequence of elements from the second generator.
So one can choose among these implementations, dependent on the desired behavior.

Related

Swift testing non-scalar types

I want to test my function that takes a string, a returns all the pairs of characters as an array s.t.
func pairsOfChars(_ s: String) -> [(Character,Character)] {
let strArray = Array(s)
var outputArray = [(Character,Character)]()
for i in 0..<strArray.count - 1 {
for j in i + 1..<strArray.count {
outputArray.append( (strArray[i], strArray[j]) )
}
}
return outputArray
}
So I want to create a suite of tests using XCTestCase. I usually use XCTestCase and XCTAssertEqual but these are only appropriate for C scalar types. This means that the following test case returns an error:
class pairsTests: XCTestCase {
func testNaive() {
measure {
XCTAssertEqual( pairsOfChars("abc") , [(Character("a"),Character("b")),(Character("a"),Character("c")),(Character("b"),Character("c")) ] )
}
}
}
I could convert to a string, but I'm thinking there is a better solution.
How can I test an output of an array of pairs of characters [(Character,Character)]
Your notion of a nonscalar is a total red herring. The problem is one of equatability.
How can I test an output of an array of pairs of characters [(Character,Character)]
You can't, because there is no default notion of what it would mean to equate two such arrays. This is the old "tuples of Equatable are not Equatable" problem (https://bugs.swift.org/browse/SR-1222) which still rears its head with arrays. The == operator works on tuples by a kind of magic, but they are still not formally Equatable.
You could define equatability of arrays of character pairs yourself:
typealias CharPair = (Character,Character)
func ==(lhs:[CharPair], rhs:[CharPair]) -> Bool {
if lhs.count != rhs.count {
return false
}
let zipped = zip(lhs,rhs)
return zipped.allSatisfy{$0 == $1}
}
Alternatively, have your pairsOfChars return something that is more easily made equatable, such as an array of a struct for which Equatable is defined.
For example:
struct CharacterPair : Equatable {
let c1:Character
let c2:Character
// in Swift 4.2 this next bit is not needed
static func ==(lhs:CharacterPair, rhs:CharacterPair) -> Bool {
return lhs.c1 == rhs.c1 && lhs.c2 == rhs.c2
}
}
func pairsOfChars(_ s: String) -> [CharacterPair] {
let strArray = Array(s)
var outputArray = [CharacterPair]()
for i in 0..<strArray.count - 1 {
for j in i + 1..<strArray.count {
outputArray.append(CharacterPair(c1:strArray[i],c2:strArray[j]))
}
}
return outputArray
}
You would then rewrite the test to match:
XCTAssertEqual(
pairsOfChars("abc"),
[CharacterPair(c1:Character("a"),c2:Character("b")),
CharacterPair(c1:Character("a"),c2:Character("c")),
CharacterPair(c1:Character("b"),c2:Character("c"))]
)

Understanding Swift Index, Range, Distance

I'm implementing an extension to Swift's CollectionType that provides the ability to find a subsequence in the collection and to find the range of that subsequence. My code that's working in a playground is this:
extension CollectionType where Generator.Element:Equatable, Index:ForwardIndexType, SubSequence.Generator.Element == Generator.Element {
func search<S: CollectionType where S.Generator.Element == Generator.Element, S.Index:ForwardIndexType>(pattern: S) -> Self.Index? {
return self.lazy.indices.indexOf{
self[$0..<self.endIndex].startsWith(pattern)
}
}
func rangeOf<S: CollectionType where S.Generator.Element == Generator.Element, S.Index:ForwardIndexType, Index:ForwardIndexType>(pattern: S) -> Range<Index>? {
if let start = self.search(pattern) {
var end = start
for _ in pattern.startIndex..<pattern.endIndex {
end = end.advancedBy(1)
}
return start..<end
} else {
return nil
}
}
}
Simple playground test cases are these:
let fibs = [1, 1, 2, 3, 5, 8, 13]
if let fidx = fibs.search([3, 5]) {
print(fibs[..<fidx]) // prints "[1, 1, 2]\n"
print(fidx..<fidx.advancedBy([1,1,5].count)) // prints "3..<6\n"
}
if let rng = fibs.rangeOf([5,8,13]) {
print(rng) // prints "4..<7\n"
}
However, in the rangeOf function, instead of the loop
for _ in pattern.startIndex..<pattern.endIndex {
end = end.advancedBy(1)
}
I expected to be able to use the statement
end = start.advancedBy(pattern.count, limit: self.endIndex)
or perhaps
end = start.advancedBy(pattern.endIndex - pattern.startIndex, limit: self.endIndex)
(I do recognize that the limit parameter is redundant; omitting it makes no difference in the following.) Neither of those last two compile, with the error cannot invoke 'advancedBy' with an argument list of type '(S.Index.Distance, limit: Self.Index)'. My question is, why isn't either of these two forms acceptable? (I suppose there are other valid questions as to whether I've properly formed the constraints on types for the extension and for the functions, but since the one version works I'm ignoring that for now.)
end = start.advancedBy(pattern.count, limit: self.endIndex)
does not compile because the collections self and pattern need
not have the same Index type.
It compiles if you add a constraint S.Index == Index to the rangeOf() method.

swift generics return first and last element

I'm trying to get used to generics (never used them in objc) and want to write a toy function that takes an object of any type () and returns the first and last element. Hypothetically, I'd only use this on an array or a string - I keep getting an error that has no subscript members. I totally understand that the error message is telling me swift has no clue that T may potentially hold a type that does have subscripts - I just want to know how to get around this.
func firstAndLastFromCollection<T>(a:T?) {
var count: Int = 0
for item in a as! [AnyObject] {
count++
}
if count>1 {
var first = a?[0]
var last = a?[count-1]
return (first, last)
}
return something else here
}
Do I need to typecast somewhere here (which would kind of defeat the purpose here, as I'd need to downcast as either a string or an array, adding code and lessening how generic this func is)?
If you want to return the first and the last element then it's probably safe assuming the input param is an array of some kind of type.
So you can implement your function this way
func firstAndLast<T>(list:[T]) -> (first:T, last:T)? {
guard let first = list.first, last = list.last else { return nil }
return (first, last)
}
The function does return a tuple of 2 element, both have the same type of the generic element of the input array.
The returned tuple is an option because if the array is empty then nil is returned.
Examples
let nums = firstAndLast([1,2,3,4])
let words = firstAndLast(["One", "Two", "Three"])
As you can verify the type of the generic element into the array becomes the type of the elements inside the tuple.
In the example above nums is inferred to be (Int, Int)? and words (Words, Words)?
More examples
let emptyList: [String] = []
firstAndLast(emptyList) // nil
Extension
Finally you can also write this code as an extension of Array.
extension Array {
var firstAndLast: (first:Element, last:Element)? {
guard let first = self.first, last = self.last else { return nil }
return (first, last)
}
}
Now you can write
let aCoupleOfShows = ["Breaking Bad", "Better Call Saul", "Mr Robot"].firstAndLast
Again, if you check the type of the constant aCoupleOfShows you'll see that is a (first: String, last: String)?. Swift automatically did infer the correct type.
Last example
In the comments you said you wanted the first and last chars of a String. here it is the code if you use the extension above
if let chars = Array("Hello world".characters).firstAndLast {
print("First char is \(chars.first), last char is \(chars.last) ")
}
//>> First char is H, last char is d
If we are talking about collections, let's use the CollectionType:
func firstAndLastFromCollection<T: CollectionType>(a: T) -> (T.Generator.Element, T.Generator.Element)? {
guard !a.isEmpty else {
return nil
}
return (a.first!, a.lazy.reverse().first!)
}
print(firstAndLastFromCollection(["a", "b", "c"])) // ("a", "c")
print(firstAndLastFromCollection("abc".characters)) // ("a", "c")
print(firstAndLastFromCollection(0..<200)) // (0, 199)
print(firstAndLastFromCollection([] as [String])) // nil
If you specify your generic type to also conform to bidirectional index:
func firstAndLastFromCollection<T: CollectionType where T.Index : BidirectionalIndexType>(...) -> ...
then you can call last directly:
return (a.first!, a.last!)
If we decide to implement it using a category, we don't need generics at all:
extension CollectionType {
func firstAndLast() -> (Generator.Element, Generator.Element)? {
guard !self.isEmpty else {
return nil
}
return (self.first!, self.lazy.reverse().first!)
}
}
extension CollectionType where Index: BidirectionalIndexType {
func firstAndLast() -> (Generator.Element, Generator.Element)? {
guard !self.isEmpty else {
return nil
}
return (self.first!, self.last!)
}
}
print("abc".characters.firstAndLast())
Swift is a protocol oriented language. Usually you will find yourself extend protocols more than extending classes or structs.

Recursion over a Swift Sliceable

I feel that I must be missing something obvious. Decomposing a list into the head and tail and then recursing over the tail is a standard functional programming technique, yet I'm struggling to do this for Sliceable types in Swift.
I have a recursive function that follows this pattern:
func recurseArray(arr: [Int]) -> [Int] {
guard let first = arr.first else {
return []
}
let rest = recurseArray(Array(dropFirst(arr)))
let next = rest.first ?? 0
return [first + next] + rest
}
Obviously the real code does a lot more than add each number to the next.
Note the call to Array(dropFirst(seq)). Converting to an Array is required since dropFirst actually returns an ArraySlice, and an ArraySlice isn't a Sliceable, so I can't pass it to my function.
I'm not sure what sort of optimization the compiler is capable of here, but it seems to me that creating a new array from a SubSlice unnecessarily won't be optimal. Is there a solution to this?
Furthermore, what I'd really like to do is create a version of this function that can take any Sliceable type:
func recurseSeq<T: Sliceable where T.Generator.Element == Int>(list: T) -> [Int] {
guard let first = list.first else {
return []
}
let rest = recurseSeq(dropFirst(list)) // <- Error - cannot invoke with argument type T.SubSlice
let next = rest.first ?? 0
return [first + next] + rest
}
This time I don't have a solution to the fact that I have a SubSlice. How can I achieve my goal?
It turns out that there is a generic solution. You need to add these generic requirements:
<
S : Sliceable where S.SubSlice : Sliceable,
S.SubSlice.Generator.Element == S.Generator.Element,
S.SubSlice.SubSlice == S.SubSlice
>
For the question posted, this gives:
func recurseSeq<
S : Sliceable where S.SubSlice : Sliceable,
S.SubSlice.Generator.Element == Int,
S.SubSlice.SubSlice == S.SubSlice,
S.Generator.Element == Int
>(list: S) -> [Int] {
guard let first = list.first else {
return []
}
let rest = recurseSeq(dropFirst(list))
let next = rest.first ?? 0
return [first + next] + rest
}
Here's a useful generic reduce on any sliceable:
extension Sliceable where
SubSlice : Sliceable,
SubSlice.Generator.Element == Generator.Element,
SubSlice.SubSlice == SubSlice {
func recReduce(combine: (Generator.Element, Generator.Element) -> Generator.Element) -> Generator.Element? {
return self.first.map {
head in
dropFirst(self)
.recReduce(combine)
.map {combine(head, $0)}
?? head
}
}
}
[1, 2, 3].recReduce(+) // 6
I can't take credit for this, the solution was posted on the Apple Development Forums.
It's a shame that the generic requirements are so involved for such a a basic operation - it's hardly intuitive! But I'm glad to have a solution...
Actually ArraySlice is Sliceable, so you can recurse on
ArraySlice<Int>:
func recurseArray(arr: ArraySlice<Int>) -> [Int] {
guard let first = arr.first else {
return []
}
let rest = recurseArray(dropFirst(arr))
let next = rest.first ?? 0
return [first + next] + rest
}
with a wrapper function which is called only once at the top level:
func recurseArray(arr: [Int]) -> [Int] {
return recurseArray(arr[arr.startIndex ..< arr.endIndex])
}
I don't have a solution for your second more general problem.
The API docs for Sliceable state that SubSlice should be
Sliceable itself (which is the case for all known Sliceable
types).
I have therefore the feeling that it should be possible by requesting
that T.SubSlice is itself sliceable with the identical SubSlice
type, however this does not compile:
func recurseSeq<T: Sliceable where T.Generator.Element == Int,
T.SubSlice : Sliceable,
T.SubSlice.SubSlice == T.SubSlice>(list: T.SubSlice) -> [Int] {
guard let first = list.first else {
return []
}
let rest = recurseSeq(dropFirst(list) as T.SubSlice)
// error: cannot invoke 'recurseSeq' with an argument list of type '(T.SubSlice)'
let next = rest.first ?? 0
return [first + next] + rest
}
The compiler accepts that dropFirst(list) can be cast to T.SubSlice,
but refuses to call recurseSeq() on that value, which I do not
understand.
Alternatively, you can recurse on a GeneratorType:
func recurseGen<G: GeneratorType where G.Element == Int>(inout gen: G) -> [Int] {
guard let first = gen.next() else {
return []
}
let rest = recurseGen(&gen)
let next = rest.first ?? 0
return [first + next] + rest
}
with a wrapper that takes a SequenceType:
func recurseSeq<T: SequenceType where T.Generator.Element == Int>(list: T) -> [Int] {
var gen = list.generate()
return recurseGen(&gen)
}
Arrays and array slices all conform to SequenceType, so that should
work in all your cases.
Creating an array in every iteration doesn't seem like a good idea. I don't know if the compiler optimizes it somehow, but you could probably find a different solution.
For example, in this case, you could drop de recursion and use a for loop instead that modifies the array in place.
func recurseArray2(var a: [Int]) -> [Int] {
for var i = a.count-1; i > 0; i-- {
a[i-1] += a[i]
}
return a
}

Swift Array - Check if an index exists

In Swift, is there any way to check if an index exists in an array without a fatal error being thrown?
I was hoping I could do something like this:
let arr: [String] = ["foo", "bar"]
let str: String? = arr[1]
if let str2 = arr[2] as String? {
// this wouldn't run
println(str2)
} else {
// this would be run
}
But I get
fatal error: Array index out of range
An elegant way in Swift:
let isIndexValid = array.indices.contains(index)
Type extension:
extension Collection {
subscript(optional i: Index) -> Iterator.Element? {
return self.indices.contains(i) ? self[i] : nil
}
}
Using this you get an optional value back when adding the keyword optional to your index which means your program doesn't crash even if the index is out of range. In your example:
let arr = ["foo", "bar"]
let str1 = arr[optional: 1] // --> str1 is now Optional("bar")
if let str2 = arr[optional: 2] {
print(str2) // --> this still wouldn't run
} else {
print("No string found at that index") // --> this would be printed
}
Just check if the index is less than the array size:
if 2 < arr.count {
...
} else {
...
}
Add some extension sugar:
extension Collection {
subscript(safe index: Index) -> Iterator.Element? {
guard indices.contains(index) else { return nil }
return self[index]
}
}
if let item = ["a", "b", "c", "d"][safe: 3] { print(item) } // Output: "d"
// or with guard:
guard let anotherItem = ["a", "b", "c", "d"][safe: 3] else { return }
print(anotherItem) // "d"
Enhances readability when doing if let style coding in conjunction with arrays
the best way.
let reqIndex = array.indices.contains(index)
print(reqIndex)
Swift 4 extension:
For me i prefer like method.
// MARK: - Extension Collection
extension Collection {
/// Get at index object
///
/// - Parameter index: Index of object
/// - Returns: Element at index or nil
func get(at index: Index) -> Iterator.Element? {
return self.indices.contains(index) ? self[index] : nil
}
}
Thanks to #Benno Kress
You can rewrite this in a safer way to check the size of the array, and use a ternary conditional:
if let str2 = (arr.count > 2 ? arr[2] : nil) as String?
Asserting if an array index exist:
This methodology is great if you don't want to add extension sugar:
let arr = [1,2,3]
if let fourthItem = (3 < arr.count ? arr[3] : nil ) {
Swift.print("fourthItem: \(fourthItem)")
}else if let thirdItem = (2 < arr.count ? arr[2] : nil) {
Swift.print("thirdItem: \(thirdItem)")
}
//Output: thirdItem: 3
extension Array {
func isValidIndex(_ index : Int) -> Bool {
return index < self.count
}
}
let array = ["a","b","c","d"]
func testArrayIndex(_ index : Int) {
guard array.isValidIndex(index) else {
print("Handle array index Out of bounds here")
return
}
}
It's work for me to handle indexOutOfBounds.
Swift 4 and 5 extension:
As for me I think this is the safest solution:
public extension MutableCollection {
subscript(safe index: Index) -> Element? {
get {
return indices.contains(index) ? self[index] : nil
}
set(newValue) {
if let newValue = newValue, indices.contains(index) {
self[index] = newValue
}
}
}
}
Example:
let array = ["foo", "bar"]
if let str = array[safe: 1] {
print(str) // "bar"
} else {
print("index out of range")
}
I believe the existing answers could be improved further because this function could be needed in multiple places within a codebase (code smell when repeating common operations). So thought of adding my own implementation, with reasoning for why I considered this approach (efficiency is an important part of good API design, and should be preferred where possible as long as readability is not too badly affected). In addition to enforcing good Object-Oriented design with a method on the type itself, I think Protocol Extensions are great and we can make the existing answers even more Swifty. Limiting the extension is great because you don’t create code you don’t use. Making the code cleaner and extensible can often make maintenance easier, but there are trade-offs (succinctness being the one I thought of first).
So, you can note that if you'd ONLY like to use the extension idea for reusability but prefer the contains method referenced above you can rework this answer. I have tried to make this answer flexible for different uses.
TL;DR
You can use a more efficient algorithm (Space and Time) and make it extensible using a protocol extension with generic constraints:
extension Collection where Element: Numeric { // Constrain only to numerical collections i.e Int, CGFloat, Double and NSNumber
func isIndexValid(index: Index) -> Bool {
return self.endIndex > index && self.startIndex <= index
}
}
// Usage
let checkOne = digits.isIndexValid(index: index)
let checkTwo = [1,2,3].isIndexValid(index: 2)
Deep Dive
Efficiency
#Manuel's answer is indeed very elegant but it uses an additional layer of indirection (see here). The indices property acts like a CountableRange<Int> under the hood created from the startIndex and endIndex without reason for this problem (marginally higher Space Complexity, especially if the String is long). That being said, the Time Complexity should be around the same as a direct comparison between the endIndex and startIndex properties because N = 2 even though contains(_:) is O(N) for Collections (Ranges only have two properties for the start and end indices).
For the best Space and Time Complexity, more extensibility and only marginally longer code, I would recommend using the following:
extension Collection {
func isIndexValid(index: Index) -> Bool {
return self.endIndex > index && self.startIndex <= index
}
}
Note here how I've used startIndex instead of 0 - this is to support ArraySlices and other SubSequence types. This was another motivation to post a solution.
Example usage:
let check = digits.isIndexValid(index: index)
For Collections in general, it's pretty hard to create an invalid Index by design in Swift because Apple has restricted the initializers for associatedtype Index on Collection - ones can only be created from an existing valid Collection.Index (like startIndex).
That being said, it's common to use raw Int indices for Arrays because there are many instances when you need to check random Array indices. So you may want to limit the method to fewer structs...
Limit Method Scope
You will notice that this solution works across all Collection types (extensibility), but you can restrict this to Arrays only if you want to limit the scope for your particular app (for example, if you don't want the added String method because you don't need it).
extension Array {
func isIndexValid(index: Index) -> Bool {
return self.endIndex > index && self.startIndex <= index
}
}
For Arrays, you don't need to use an Index type explicitly:
let check = [1,2,3].isIndexValid(index: 2)
Feel free to adapt the code here for your own use cases, there are many types of other Collections e.g. LazyCollections. You can also use generic constraints, for example:
extension Collection where Element: Numeric {
func isIndexValid(index: Index) -> Bool {
return self.endIndex > index && self.startIndex <= index
}
}
This limits the scope to Numeric Collections, but you can use String explicitly as well conversely. Again it's better to limit the function to what you specifically use to avoid code creep.
Referencing the method across different modules
The compiler already applies multiple optimizations to prevent generics from being a problem in general, but these don't apply when the code is being called from a separate module. For cases like that, using #inlinable can give you interesting performance boosts at the cost of an increased framework binary size. In general, if you're really into improving performance and want to encapsulate the function in a separate Xcode target for good SOC, you can try:
extension Collection where Element: Numeric {
// Add this signature to the public header of the extensions module as well.
#inlinable public func isIndexValid(index: Index) -> Bool {
return self.endIndex > index && self.startIndex <= index
}
}
I can recommend trying out a modular codebase structure, I think it helps to ensure Single Responsibility (and SOLID) in projects for common operations. We can try following the steps here and that is where we can use this optimisation (sparingly though). It's OK to use the attribute for this function because the compiler operation only adds one extra line of code per call site but it can improve performance further since a method is not added to the call stack (so doesn’t need to be tracked). This is useful if you need bleeding-edge speed, and you don’t mind small binary size increases. (-: Or maybe try out the new XCFrameworks (but be careful with the ObjC runtime compatibility for < iOS 13).
I think we should add this extension to every project in Swift
extension Collection {
#inlinable func isValid(position: Self.Index) -> Bool {
return (startIndex..<endIndex) ~= position
}
#inlinable func isValid(bounds: Range<Self.Index>) -> Bool {
return (startIndex..<endIndex) ~= bounds.upperBound
}
#inlinable subscript(safe position: Self.Index) -> Self.Element? {
guard isValid(position: position) else { return nil }
return self[position]
}
#inlinable subscript(safe bounds: Range<Self.Index>) -> Self.SubSequence? {
guard isValid(bounds: bounds) else { return nil }
return self[bounds]
}
}
extension MutableCollection {
#inlinable subscript(safe position: Self.Index) -> Self.Element? {
get {
guard isValid(position: position) else { return nil }
return self[position]
}
set {
guard isValid(position: position), let newValue = newValue else { return }
self[position] = newValue
}
}
#inlinable subscript(safe bounds: Range<Self.Index>) -> Self.SubSequence? {
get {
guard isValid(bounds: bounds) else { return nil }
return self[bounds]
}
set {
guard isValid(bounds: bounds), let newValue = newValue else { return }
self[bounds] = newValue
}
}
}
note that my isValid(position:) and isValid(bounds:) functions is of a complexity O(1), unlike most of the answers below, which uses the contains(_:) method which is of a complexity O(n)
Example usage:
let arr = ["a","b"]
print(arr[safe: 2] ?? "nil") // output: nil
print(arr[safe: 1..<2] ?? "nil") // output: nil
var arr2 = ["a", "b"]
arr2[safe: 2] = "c"
print(arr2[safe: 2] ?? "nil") // output: nil
arr2[safe: 1..<2] = ["c","d"]
print(arr[safe: 1..<2] ?? "nil") // output: nil