Found Unit, required Int - scala

I have the following Scala code:
object Solution {
def getBestSolution(sumList: List[Int]): Int = {
return 0
}
def main(args: Array[String]) {
val t = readInt()
(0 until t).foreach({
val n = readInt()
val a = readLine().split(" ").map(_.toInt).toList
val sumList = a.scanLeft(0)(_ + _).tail.toList
//println(classOf[sumList])
println(sumList)
println(getBestSolution(sumList))
})
}
}
For it, I am getting this error:
file.scala:16: error: type mismatch;
found : Unit
required: Int => ?
println(getBestSolution(sumList))
^
one error found
Any idea what is causing this?

The argument you are passing to foreach is the result of executing the code block (which is a Unit), not a function.
Remove the outer parentheses (they do not really hurt anything, but are unnecessary and look ugly), and add _ => in the beginning:
(0 to t).foreach { _ =>
...
println(getBestSolution(sumList))
}
This is the proper syntax for creating an unnamed function. The stuff before => is the parameter list that the function accepts. In your case, you can just put an underscore there, because you do not need the value of the parameter. Or you could give it a name if you needed to do something with it, e.g.: (0 to t).foreach { x => println(x*x) }

you could have done it with simple for comprehension too instead of foreach
for(x <- 0 to t){
val n = readInt()
val a = readLine().split(" ").map(_.toInt).toList
val sumList = a.scanLeft(0)(_ + _).tail.toList
//println(classOf[sumList])
println(sumList)
println(getBestSolution(sumList))
}
To sum up, Programming in Scala book has pointed that Scala provides the for comprehension, which provides syntactically pleasing nesting of map, flatMap, and filter ... The for comprehension is not a looping construct, but is a syntactic construct the compiler reduces to map, flatMap, and filter.

Related

scala Option and datatypes

i'm getting an error when trying to getOrElse 2 values. As a stripped down example, all i'm trying to do is:
take a string value
check if its a range (eg 50-60). if it is, take the first value before the '-', else take the whole value
return the value as an Option[Double] for further processing
def deriveResult(inputValue: Option[String]): String = {
val hyphenIndex = inputValue.get.indexOf("-")
// parse the low range
val rangedValue: Option[java.lang.Double] = if (hyphenIndex != -1) {
val lowRangeStringUntruncated = inputValue.get.substring (0, hyphenIndex)
val lowRangeString = lowRangeStringUntruncated.substring (0, scala.math.min (lowRangeStringUntruncated.length, 8) )
scala.util.Try[java.lang.Double](lowRangeString.toDouble).toOption
} else null
val nonRangedValue: Option[java.lang.Double] = scala.util.Try[java.lang.Double](inputValue.get.toDouble).toOption
val valueOptDouble: Option[java.lang.Double] = Option(rangedValue.getOrElse(nonRangedValue))
...
<do something with valueOptDouble>
}
Error:(157, 89) type mismatch;
found : Option[Double]
required: Double
val valueOptDouble: Option[java.lang.Double] = Option(rangedValue.getOrElse(nonRangedValue))
I'm sure this could be written much more concisely, but what i'm confused about is why the final line results in this error, as it seems both rangedValue and nonRangedValue are of type Option[Double]
Thanks for any help
The type error is with
rangedValue.getOrElse(nonRangedValue)
because getOrElse here expects Double argument but nonRangedValue is Option[Double]. Perhaps try orElse instead of getOrElse
val valueOptDouble: Option[Double] = rangedValue orElse nonRangedValue
You probably want to take a look at the Scaladoc to learn about useful combinators like map and flatMap
I really, couldn't understand what your code does, so here is an attempt to solve the same problem.
In any case, I believe the code should be easy to adapt to your real needs, but feel free to ask any questions or provide clarification over the problem so I could edit the code.
def getValueFromString(inputValue: String): Option[Double] =
inputValue.split('-').toList match {
case raw1 :: raw2 :: Nil =>
for {
first <- raw1.toDoubleOption
second <- raw2.toDoubleOption
} yield if (first < 60.0d) first else second
case _ =>
None
And then you can pass this method to a flatMap of the original Option[String] like this:
Some("10-30").flatMap(getValueFromString)
// res: Option[Double] = Some(10.0d)
You can see the code running here.
Just do inputValue.split("-").head.toDouble

How to define a function in scala for flatMap

New to Scala, I want to try to rewrite some code in flatMap by calling a function instead of writing the whole process inside "()".
The original code is like:
val longForm = summary.flatMap(row => {
/*This is the code I want to replace with a function*/
val metric = row.getString(0)
(1 until row.size).map{i=>
(metric,schema(i).name,row.getString(i).toDouble)
})
}/*End of function*/)
The function I wrote is:
def tfunc(line:Row):List[Any] ={
val metric = line.getString(0)
var res = List[Any]
for (i<- 1 to line.size){
/*Save each iteration result as a List[tuple], then append to the res List.*/
val tup = (metric,schema(i).name,line.getString(i).toDouble)
val tempList = List(tup)
res = res :: tempList
}
res
}
The function did not passed compilation with the following error:
error: missing argument list for method apply in object List
Unapplied methods are only converted to functions when a function type is expected.
You can make this conversion explicit by writing apply _ or apply(_) instead of apply.
var res = List[Any]
What is wrong with this function?
And for flatMap, is it the write way to return the result as a List?
You haven't explained why you want to replace that code block. Is there a particular goal you're after? There are many, many, different ways that block could be rewritten. How can we know which would be better at meeting you requirements?
Here's one approach.
def tfunc(line :Row) :List[(String,String,Double)] ={
val metric = line.getString(0)
List.tabulate(line.tail.length){ idx =>
(metric, schema(idx+1).name, line.getString(idx+1).toDouble)
}
}

Cats Writer Vector is empty

I wrote this simple program in my attempt to learn how Cats Writer works
import cats.data.Writer
import cats.syntax.applicative._
import cats.syntax.writer._
import cats.instances.vector._
object WriterTest extends App {
type Logged2[A] = Writer[Vector[String], A]
Vector("started the program").tell
val output1 = calculate1(10)
val foo = new Foo()
val output2 = foo.calculate2(20)
val (log, sum) = (output1 + output2).pure[Logged2].run
println(log)
println(sum)
def calculate1(x : Int) : Int = {
Vector("came inside calculate1").tell
val output = 10 + x
Vector(s"Calculated value ${output}").tell
output
}
}
class Foo {
def calculate2(x: Int) : Int = {
Vector("came inside calculate 2").tell
val output = 10 + x
Vector(s"calculated ${output}").tell
output
}
}
The program works and the output is
> run-main WriterTest
[info] Compiling 1 Scala source to /Users/Cats/target/scala-2.11/classes...
[info] Running WriterTest
Vector()
50
[success] Total time: 1 s, completed Jan 21, 2017 8:14:19 AM
But why is the vector empty? Shouldn't it contain all the strings on which I used the "tell" method?
When you call tell on your Vectors, each time you create a Writer[Vector[String], Unit]. However, you never actually do anything with your Writers, you just discard them. Further, you call pure to create your final Writer, which simply creates a Writer with an empty Vector. You have to combine the writers together in a chain that carries your value and message around.
type Logged[A] = Writer[Vector[String], A]
val (log, sum) = (for {
_ <- Vector("started the program").tell
output1 <- calculate1(10)
foo = new Foo()
output2 <- foo.calculate2(20)
} yield output1 + output2).run
def calculate1(x: Int): Logged[Int] = for {
_ <- Vector("came inside calculate1").tell
output = 10 + x
_ <- Vector(s"Calculated value ${output}").tell
} yield output
class Foo {
def calculate2(x: Int): Logged[Int] = for {
_ <- Vector("came inside calculate2").tell
output = 10 + x
_ <- Vector(s"calculated ${output}").tell
} yield output
}
Note the use of for notation. The definition of calculate1 is really
def calculate1(x: Int): Logged[Int] = Vector("came inside calculate1").tell.flatMap { _ =>
val output = 10 + x
Vector(s"calculated ${output}").tell.map { _ => output }
}
flatMap is the monadic bind operation, which means it understands how to take two monadic values (in this case Writer) and join them together to get a new one. In this case, it makes a Writer containing the concatenation of the logs and the value of the one on the right.
Note how there are no side effects. There is no global state by which Writer can remember all your calls to tell. You instead make many Writers and join them together with flatMap to get one big one at the end.
The problem with your example code is that you're not using the result of the tell method.
If you take a look at its signature, you'll see this:
final class WriterIdSyntax[A](val a: A) extends AnyVal {
def tell: Writer[A, Unit] = Writer(a, ())
}
it is clear that tell returns a Writer[A, Unit] result which is immediately discarded because you didn't assign it to a value.
The proper way to use a Writer (and any monad in Scala) is through its flatMap method. It would look similar to this:
println(
Vector("started the program").tell.flatMap { _ =>
15.pure[Logged2].flatMap { i =>
Writer(Vector("ended program"), i)
}
}
)
The code above, when executed will give you this:
WriterT((Vector(started the program, ended program),15))
As you can see, both messages and the int are stored in the result.
Now this is a bit ugly, and Scala actually provides a better way to do this: for-comprehensions. For-comprehension are a bit of syntactic sugar that allows us to write the same code in this way:
println(
for {
_ <- Vector("started the program").tell
i <- 15.pure[Logged2]
_ <- Vector("ended program").tell
} yield i
)
Now going back to your example, what I would recommend is for you to change the return type of compute1 and compute2 to be Writer[Vector[String], Int] and then try to make your application compile using what I wrote above.

Scala macros: Emit for comprehensions from macros

Trying to emit a for yield block from a blackbox macro, but I'm failing to understand how you can create the block with valid syntax.
So below source is a hardcoded param name as this block is later inserted inside a method that will have the matching param name. params is just params: Seq[c.universe.ValDef], enclosing the case class fields.
def extract(source: Source): Option[CaseClass] = { ... }
val extractors = accessors(c)(params) map {
case (nm, tpe) => {
val newTerm = TermName(nm.toString + "Opt")
q"""$newTerm <- DoStuff[$tpe].apply("$nm", source)"""
}
}
val extractorNames = accessors(c)(params) map {
case (nm, tpe) => TermName(nm.toString + "Opt")
}
This is basically taking a case class, and outputting a for yield black to basically recreate the case class from a comprehension.
Every field in the case class of the form name: Type is transformed to a set of extractors that yield the same case class instance back if the for comprehension is successful.
case class Test(id: Int, text: String)
Will be macro transformed to the following, where Extract is just a type class and Extract.apply[T : Extract] is just materialising the context bound with implicitly[Extract[T]]:
for {
idOpt <- Extract[Int].apply("id", source): Option[Int]
textOpt <- Extract[String].apply("text", source): Option[String]
} yield Test(idOpt, textOpt)
The problem comes in having to quote the inner for yield expressions with and output a <- b blocks.
def extract(source: Source): Option[$typeName] = {
for {(..$extractors)} yield $companion.apply(..$extractorNames)
}
The error is ';' expected but '<-' found, which is pretty obvious as a <- b is invalid Scala by itself. What is the correct way to generate and quasiquote the expression block such that the above would work?
Here is a list of all the different kinds of quasiquotes.
There you can see that to express the a <- b syntax you need the fq interpolator.
So that code will probably become:
val extractors = accessors(c)(params) map {
case (nm, tpe) => {
val newTerm = TermName(nm.toString + "Opt")
fq"""$newTerm <- DoStuff[$tpe].apply("$nm", source)"""
}
}
And then with the normal interpolator:
q"for (..$extractors) yield $companion.apply(..$extractorNames)"

How to yield a single element from for loop in scala?

Much like this question:
Functional code for looping with early exit
Say the code is
def findFirst[T](objects: List[T]):T = {
for (obj <- objects) {
if (expensiveFunc(obj) != null) return /*???*/ Some(obj)
}
None
}
How to yield a single element from a for loop like this in scala?
I do not want to use find, as proposed in the original question, i am curious about if and how it could be implemented using the for loop.
* UPDATE *
First, thanks for all the comments, but i guess i was not clear in the question. I am shooting for something like this:
val seven = for {
x <- 1 to 10
if x == 7
} return x
And that does not compile. The two errors are:
- return outside method definition
- method main has return statement; needs result type
I know find() would be better in this case, i am just learning and exploring the language. And in a more complex case with several iterators, i think finding with for can actually be usefull.
Thanks commenters, i'll start a bounty to make up for the bad posing of the question :)
If you want to use a for loop, which uses a nicer syntax than chained invocations of .find, .filter, etc., there is a neat trick. Instead of iterating over strict collections like list, iterate over lazy ones like iterators or streams. If you're starting with a strict collection, make it lazy with, e.g. .toIterator.
Let's see an example.
First let's define a "noisy" int, that will show us when it is invoked
def noisyInt(i : Int) = () => { println("Getting %d!".format(i)); i }
Now let's fill a list with some of these:
val l = List(1, 2, 3, 4).map(noisyInt)
We want to look for the first element which is even.
val r1 = for(e <- l; val v = e() ; if v % 2 == 0) yield v
The above line results in:
Getting 1!
Getting 2!
Getting 3!
Getting 4!
r1: List[Int] = List(2, 4)
...meaning that all elements were accessed. That makes sense, given that the resulting list contains all even numbers. Let's iterate over an iterator this time:
val r2 = (for(e <- l.toIterator; val v = e() ; if v % 2 == 0) yield v)
This results in:
Getting 1!
Getting 2!
r2: Iterator[Int] = non-empty iterator
Notice that the loop was executed only up to the point were it could figure out whether the result was an empty or non-empty iterator.
To get the first result, you can now simply call r2.next.
If you want a result of an Option type, use:
if(r2.hasNext) Some(r2.next) else None
Edit Your second example in this encoding is just:
val seven = (for {
x <- (1 to 10).toIterator
if x == 7
} yield x).next
...of course, you should be sure that there is always at least a solution if you're going to use .next. Alternatively, use headOption, defined for all Traversables, to get an Option[Int].
You can turn your list into a stream, so that any filters that the for-loop contains are only evaluated on-demand. However, yielding from the stream will always return a stream, and what you want is I suppose an option, so, as a final step you can check whether the resulting stream has at least one element, and return its head as a option. The headOption function does exactly that.
def findFirst[T](objects: List[T], expensiveFunc: T => Boolean): Option[T] =
(for (obj <- objects.toStream if expensiveFunc(obj)) yield obj).headOption
Why not do exactly what you sketched above, that is, return from the loop early? If you are interested in what Scala actually does under the hood, run your code with -print. Scala desugares the loop into a foreach and then uses an exception to leave the foreach prematurely.
So what you are trying to do is to break out a loop after your condition is satisfied. Answer here might be what you are looking for. How do I break out of a loop in Scala?.
Overall, for comprehension in Scala is translated into map, flatmap and filter operations. So it will not be possible to break out of these functions unless you throw an exception.
If you are wondering, this is how find is implemented in LineerSeqOptimized.scala; which List inherits
override /*IterableLike*/
def find(p: A => Boolean): Option[A] = {
var these = this
while (!these.isEmpty) {
if (p(these.head)) return Some(these.head)
these = these.tail
}
None
}
This is a horrible hack. But it would get you the result you wished for.
Idiomatically you'd use a Stream or View and just compute the parts you need.
def findFirst[T](objects: List[T]): T = {
def expensiveFunc(o : T) = // unclear what should be returned here
case class MissusedException(val data: T) extends Exception
try {
(for (obj <- objects) {
if (expensiveFunc(obj) != null) throw new MissusedException(obj)
})
objects.head // T must be returned from loop, dummy
} catch {
case MissusedException(obj) => obj
}
}
Why not something like
object Main {
def main(args: Array[String]): Unit = {
val seven = (for (
x <- 1 to 10
if x == 7
) yield x).headOption
}
}
Variable seven will be an Option holding Some(value) if value satisfies condition
I hope to help you.
I think ... no 'return' impl.
object TakeWhileLoop extends App {
println("first non-null: " + func(Seq(null, null, "x", "y", "z")))
def func[T](seq: Seq[T]): T = if (seq.isEmpty) null.asInstanceOf[T] else
seq(seq.takeWhile(_ == null).size)
}
object OptionLoop extends App {
println("first non-null: " + func(Seq(null, null, "x", "y", "z")))
def func[T](seq: Seq[T], index: Int = 0): T = if (seq.isEmpty) null.asInstanceOf[T] else
Option(seq(index)) getOrElse func(seq, index + 1)
}
object WhileLoop extends App {
println("first non-null: " + func(Seq(null, null, "x", "y", "z")))
def func[T](seq: Seq[T]): T = if (seq.isEmpty) null.asInstanceOf[T] else {
var i = 0
def obj = seq(i)
while (obj == null)
i += 1
obj
}
}
objects iterator filter { obj => (expensiveFunc(obj) != null } next
The trick is to get some lazy evaluated view on the colelction, either an iterator or a Stream, or objects.view. The filter will only execute as far as needed.