I wrote this simple program in my attempt to learn how Cats Writer works
import cats.data.Writer
import cats.syntax.applicative._
import cats.syntax.writer._
import cats.instances.vector._
object WriterTest extends App {
type Logged2[A] = Writer[Vector[String], A]
Vector("started the program").tell
val output1 = calculate1(10)
val foo = new Foo()
val output2 = foo.calculate2(20)
val (log, sum) = (output1 + output2).pure[Logged2].run
println(log)
println(sum)
def calculate1(x : Int) : Int = {
Vector("came inside calculate1").tell
val output = 10 + x
Vector(s"Calculated value ${output}").tell
output
}
}
class Foo {
def calculate2(x: Int) : Int = {
Vector("came inside calculate 2").tell
val output = 10 + x
Vector(s"calculated ${output}").tell
output
}
}
The program works and the output is
> run-main WriterTest
[info] Compiling 1 Scala source to /Users/Cats/target/scala-2.11/classes...
[info] Running WriterTest
Vector()
50
[success] Total time: 1 s, completed Jan 21, 2017 8:14:19 AM
But why is the vector empty? Shouldn't it contain all the strings on which I used the "tell" method?
When you call tell on your Vectors, each time you create a Writer[Vector[String], Unit]. However, you never actually do anything with your Writers, you just discard them. Further, you call pure to create your final Writer, which simply creates a Writer with an empty Vector. You have to combine the writers together in a chain that carries your value and message around.
type Logged[A] = Writer[Vector[String], A]
val (log, sum) = (for {
_ <- Vector("started the program").tell
output1 <- calculate1(10)
foo = new Foo()
output2 <- foo.calculate2(20)
} yield output1 + output2).run
def calculate1(x: Int): Logged[Int] = for {
_ <- Vector("came inside calculate1").tell
output = 10 + x
_ <- Vector(s"Calculated value ${output}").tell
} yield output
class Foo {
def calculate2(x: Int): Logged[Int] = for {
_ <- Vector("came inside calculate2").tell
output = 10 + x
_ <- Vector(s"calculated ${output}").tell
} yield output
}
Note the use of for notation. The definition of calculate1 is really
def calculate1(x: Int): Logged[Int] = Vector("came inside calculate1").tell.flatMap { _ =>
val output = 10 + x
Vector(s"calculated ${output}").tell.map { _ => output }
}
flatMap is the monadic bind operation, which means it understands how to take two monadic values (in this case Writer) and join them together to get a new one. In this case, it makes a Writer containing the concatenation of the logs and the value of the one on the right.
Note how there are no side effects. There is no global state by which Writer can remember all your calls to tell. You instead make many Writers and join them together with flatMap to get one big one at the end.
The problem with your example code is that you're not using the result of the tell method.
If you take a look at its signature, you'll see this:
final class WriterIdSyntax[A](val a: A) extends AnyVal {
def tell: Writer[A, Unit] = Writer(a, ())
}
it is clear that tell returns a Writer[A, Unit] result which is immediately discarded because you didn't assign it to a value.
The proper way to use a Writer (and any monad in Scala) is through its flatMap method. It would look similar to this:
println(
Vector("started the program").tell.flatMap { _ =>
15.pure[Logged2].flatMap { i =>
Writer(Vector("ended program"), i)
}
}
)
The code above, when executed will give you this:
WriterT((Vector(started the program, ended program),15))
As you can see, both messages and the int are stored in the result.
Now this is a bit ugly, and Scala actually provides a better way to do this: for-comprehensions. For-comprehension are a bit of syntactic sugar that allows us to write the same code in this way:
println(
for {
_ <- Vector("started the program").tell
i <- 15.pure[Logged2]
_ <- Vector("ended program").tell
} yield i
)
Now going back to your example, what I would recommend is for you to change the return type of compute1 and compute2 to be Writer[Vector[String], Int] and then try to make your application compile using what I wrote above.
Related
I am trying to do some handson with scala basic operations and got stuck here in the following sample code
def insuranceRateQuote(a: Int, tickets:Int) : Either[Exception, Double] = {
// ... something
Right(Double)
}
def parseInsuranceQuoteFromWebForm(age: String, numOfTickets: String) : Either[Exception, Double]= {
try{
val a = Try(age.toInt)
val tickets = Try(numOfTickets.toInt)
for{
aa <- a
t <- tickets
} yield insuranceRateQuote(aa,t) // ERROR HERE
} catch {
case _ => Left(new Exception)}
}
The Error I am getting is that it says found Try[Either[Exception,Double]]
I am not getting why it is wrapper under Try of Either
PS - This must not be the perfect way to do in scala so feel free to post your sample code :)
The key to understand is that for-comprehensions might transform what is inside the wrapper but will not change the wrapper itself. The reason is because for-comprehension de-sugar to map/flatMap calls on the wrapper determined in the first step of the chain. For example consider the following snippet
val result: Try[Int] = Try(41).map(v => v + 1)
// result: scala.util.Try[Int] = Success(42)
Note how we transformed the value inside the Try wrapper from 41 to 42 however the wrapper remained unchanged. Alternatively we could express the same thing using a for-comprehension
val result: Try[Int] = for { v <- Try(41) } yield v + 1
// result: scala.util.Try[Int] = Success(42)
Note how the effect is exactly the same. Now consider the following for comprehension which chains multiple steps
val result: Try[Int] =
for {
a <- Try(41) // first step determines the wrapper for all the other steps
b <- Try(1)
} yield a + b
// result: scala.util.Try[Int] = Success(42)
This expands to
val result: Try[Int] =
Try(41).flatMap { (a: Int) =>
Try(1).map { (b: Int) => a + b }
}
// result: scala.util.Try[Int] = Success(42)
where again we see the result is the same, namely, a value transformed inside the wrapper but wrapper remained untransformed.
Finally consider
val result: Try[Either[Exception, Int]] =
for {
a <- Try(41) // first step still determines the top-level wrapper
b <- Try(1)
} yield Right(a + b) // here we wrap inside `Either`
// result: scala.util.Try[Either[Exception,Int]] = Success(Right(42))
The principle remains the same - we did wrap a + b inside Either however this does not affect the top-level outer wrapper which is still Try.
Mario Galic's answer already explains the problem with your code, but I'd fix it differently.
Two points:
Either[Exception, A] (or rather, Either[Throwable, A]) is kind of equivalent to Try[A], with Left taking the role of Failure and Right the role of Success.
The outer try/catch is not useful because the exceptions should be captured by working in Try.
So you probably want something like
def insuranceRateQuote(a: Int, tickets:Int) : Try[Double] = {
// ... something
Success(someDouble)
}
def parseInsuranceQuoteFromWebForm(age: String, numOfTickets: String): Try[Double] = {
val a = Try(age.toInt)
val tickets = Try(numOfTickets.toInt)
for{
aa <- a
t <- tickets
q <- insuranceRateQuote(aa,t)
} yield q
}
A bit unfortunately, this does a useless map(q => q) if you figure out what the comprehension does, so you can write it more directly as
a.flatMap(aa => tickets.flatMap(t => insuranceRateQuote(aa,t)))
How to conveniently convert Seq[Try[Option[String, Any]]] into Try[Option[Map[String, Any]]].
If any Try before convert throws an exception, the converted Try should throw as well.
Assuming that the input type has a tuple inside the Option then this should give you the result you want:
val in: Seq[Try[Option[(String, Any)]]] = ???
val out: Try[Option[Map[String,Any]]] = Try(Some(in.flatMap(_.get).toMap))
If any of the Trys is Failure then the outer Try will catch the exception raised by the get and return Failure
The Some is there to give the correct return type
The get extracts the Option from the Try (or raises an exception)
Using flatMap rather than map removes the Option wrapper, keeping all Some values and discaring None values, giving Seq[(String, Any)]
The toMap call converts the Seq to a Map
Here is something that's not very clean but may help get you started. It assumes Option[(String,Any)], returns the first Failure if there are any in the input Seq and just drops None elements.
foo.scala
package foo
import scala.util.{Try,Success,Failure}
object foo {
val x0 = Seq[Try[Option[(String, Any)]]]()
val x1 = Seq[Try[Option[(String, Any)]]](Success(Some(("A",1))), Success(None))
val x2 = Seq[Try[Option[(String, Any)]]](Success(Some(("A",1))), Success(Some(("B","two"))))
val x3 = Seq[Try[Option[(String, Any)]]](Success(Some(("A",1))), Success(Some(("B","two"))), Failure(new Exception("bad")))
def f(x: Seq[Try[Option[(String, Any)]]]) =
x.find( _.isFailure ).getOrElse( Success(Some(x.map( _.get ).filterNot( _.isEmpty ).map( _.get ).toMap)) )
}
Example session
bash-3.2$ scalac foo.scala
bash-3.2$ scala -classpath .
Welcome to Scala 2.13.1 (Java HotSpot(TM) 64-Bit Server VM, Java 1.8.0_66).
Type in expressions for evaluation. Or try :help.
scala> import foo.foo._
import foo.foo._
scala> f(x0)
res0: scala.util.Try[Option[Equals]] = Success(Some(Map()))
scala> f(x1)
res1: scala.util.Try[Option[Equals]] = Success(Some(Map(A -> 1)))
scala> f(x2)
res2: scala.util.Try[Option[Equals]] = Success(Some(Map(A -> 1, B -> two)))
scala> f(x3)
res3: scala.util.Try[Option[Equals]] = Failure(java.lang.Exception: bad)
scala> :quit
If you're willing to use a functional support library like Cats then there are two tricks that can help this along:
Many things like List and Try are traversable, which means that (if Cats's implicits are in scope) they have a sequence method that can swap two types, for example converting List[Try[T]] to Try[List[T]] (failing if any of the items in the list are failure).
Almost all of the container types support a map method that can operate on the contents of a container, so if you have a function from A to B then map can convert a Try[A] to a Try[B]. (In Cats language they are functors but the container-like types in the standard library generally have map already.)
Cats doesn't directly support Seq, so this answer is mostly in terms of List instead.
Given that type signature, you can iteratively sequence the item you have to in effect push the list type down one level in the type chain, then map over that container to work on its contents. That can look like:
import cats.implicits._
import scala.util._
def convert(listTryOptionPair: List[Try[Option[(String, Any)]]]): Try[
Option[Map[String, Any]]
] = {
val tryListOptionPair = listTryOptionPair.sequence
tryListOptionPair.map { listOptionPair =>
val optionListPair = listOptionPair.sequence
optionListPair.map { listPair =>
Map.from(listPair)
}
}
}
https://scastie.scala-lang.org/xbQ8ZbkoRSCXGDJX0PgJAQ has a slightly more complete example.
One way to approach this is by using a foldLeft:
// Let's say this is the object you're trying to convert
val seq: Seq[Try[Option[(String, Any)]]] = ???
seq.foldLeft(Try(Option(Map.empty[String, Any]))) {
case (acc, e) =>
for {
accOption <- acc
elemOption <- e
} yield elemOption match {
case Some(value) => accOption.map(_ + value)
case None => accOption
}
}
You start off with en empty Map. You then use a for comprehension to go through the current map and element and finally you add a new tuple in the map if present.
The following solutions is based on this answer to the point that almost makes the question a duplicate.
Method 1: Using recursion
def trySeqToMap1[X,Y](trySeq : Seq[Try[Option[(X, Y)]]]) : Try[Option[Map[X,Y]]] = {
def helper(it : Iterator[Try[Option[(X,Y)]]], m : Map[X,Y] = Map()) : Try[Option[Map[X,Y]]] = {
if(it.hasNext) {
val x = it.next()
if(x.isFailure)
Failure(x.failed.get)
else if(x.get.isDefined)
helper(it, m + (x.get.get._1-> x.get.get._2))
else
helper(it, m)
} else Success(Some(m))
}
helper(trySeq.iterator)
}
Method 2: directly pattern matching in case you are able to get a stream or a List instead:
def trySeqToMap2[X,Y](trySeq : LazyList[Try[Option[(X, Y)]]], m : Map[X,Y]= Map.empty[X,Y]) : Try[Option[Map[X,Y]]] =
trySeq match {
case Success(Some(h)) #:: tail => trySeqToMap2(tail, m + (h._1 -> h._2))
case Success(None) #:: tail => tail => trySeqToMap2(tail, m)
case Failure(f) #:: _ => Failure(f)
case _ => Success(Some(m))
}
note: this answer was previously using different method signatures. It has been updated to conform to the signature given in the question.
Say I have some function like this:
def doSomeCode(code: => Unit): Unit = {
println("Doing some code!")
code
}
It takes in a function, prints out "Doing some code!" and then calls the passed function. If for example we called it like:
doSomeCode {
println("Some code done!")
}
It would print out "Doing some code!", followed by "Some code done!".
But I would like to disallow the use of outside variables inside that code block, for example:
def otherFunction(): Unit = {
val number = 10
doSomeCode{
println("The number is " + number)
}
}
This will print out "Doing some code!", followed by "The number is 10". But I would like it to instead throw an error because I do not want number to be in the scope of doSomeCode. Is this possible to achieve in Scala?
To be clear I am not asking if this is a good idea, I just want to know if it is possible.
Edit:
The reason I want this is because I am trying to make a syntax that is perfectly functional, I want a block with no side effects. Ideally the syntax would look like:
val a = 1
val b = 2
val c = 3
val d = 4
val sum = use(a, c, d){
val total = a + c + d
total
}
This way I as a programmer know that the only variables used are a, c, and d and that sum is the only output. Trying to use anything else, eg b, would result in an error. Currently it is not possible to know at a glance what variables a block is using. I can achieve this by just making and using a function like this:
def example(): Unit = {
val a = 1
val b = 2
val c = 3
val d = 4
val sum = sum(a, c, d)
}
def sum(a: Int, b: Int, c: Int): Int = {
val total = a + b + c
total
}
This behaves exactly like how I want it to, but I would like it to be inline with the other code, not outside as an external function.
scala> def mkClosure(i: Int) = { s: String => s"$i - $s" }
mkClosure: (i: Int)String => String
scala> mkClosure(5)
res0: String => String = <function1>
Since whether the function depends on values which aren't parameters isn't encoded in the type system, there's no compiler-enforceable difference in Scala between such a function and a pure one. It's unlikely to be possible with macros: a compiler plugin is probably your best bet, especially if you want to allow certain values (e.g. println) to be used inside a block.
I have the following Scala code:
object Solution {
def getBestSolution(sumList: List[Int]): Int = {
return 0
}
def main(args: Array[String]) {
val t = readInt()
(0 until t).foreach({
val n = readInt()
val a = readLine().split(" ").map(_.toInt).toList
val sumList = a.scanLeft(0)(_ + _).tail.toList
//println(classOf[sumList])
println(sumList)
println(getBestSolution(sumList))
})
}
}
For it, I am getting this error:
file.scala:16: error: type mismatch;
found : Unit
required: Int => ?
println(getBestSolution(sumList))
^
one error found
Any idea what is causing this?
The argument you are passing to foreach is the result of executing the code block (which is a Unit), not a function.
Remove the outer parentheses (they do not really hurt anything, but are unnecessary and look ugly), and add _ => in the beginning:
(0 to t).foreach { _ =>
...
println(getBestSolution(sumList))
}
This is the proper syntax for creating an unnamed function. The stuff before => is the parameter list that the function accepts. In your case, you can just put an underscore there, because you do not need the value of the parameter. Or you could give it a name if you needed to do something with it, e.g.: (0 to t).foreach { x => println(x*x) }
you could have done it with simple for comprehension too instead of foreach
for(x <- 0 to t){
val n = readInt()
val a = readLine().split(" ").map(_.toInt).toList
val sumList = a.scanLeft(0)(_ + _).tail.toList
//println(classOf[sumList])
println(sumList)
println(getBestSolution(sumList))
}
To sum up, Programming in Scala book has pointed that Scala provides the for comprehension, which provides syntactically pleasing nesting of map, flatMap, and filter ... The for comprehension is not a looping construct, but is a syntactic construct the compiler reduces to map, flatMap, and filter.
Much like this question:
Functional code for looping with early exit
Say the code is
def findFirst[T](objects: List[T]):T = {
for (obj <- objects) {
if (expensiveFunc(obj) != null) return /*???*/ Some(obj)
}
None
}
How to yield a single element from a for loop like this in scala?
I do not want to use find, as proposed in the original question, i am curious about if and how it could be implemented using the for loop.
* UPDATE *
First, thanks for all the comments, but i guess i was not clear in the question. I am shooting for something like this:
val seven = for {
x <- 1 to 10
if x == 7
} return x
And that does not compile. The two errors are:
- return outside method definition
- method main has return statement; needs result type
I know find() would be better in this case, i am just learning and exploring the language. And in a more complex case with several iterators, i think finding with for can actually be usefull.
Thanks commenters, i'll start a bounty to make up for the bad posing of the question :)
If you want to use a for loop, which uses a nicer syntax than chained invocations of .find, .filter, etc., there is a neat trick. Instead of iterating over strict collections like list, iterate over lazy ones like iterators or streams. If you're starting with a strict collection, make it lazy with, e.g. .toIterator.
Let's see an example.
First let's define a "noisy" int, that will show us when it is invoked
def noisyInt(i : Int) = () => { println("Getting %d!".format(i)); i }
Now let's fill a list with some of these:
val l = List(1, 2, 3, 4).map(noisyInt)
We want to look for the first element which is even.
val r1 = for(e <- l; val v = e() ; if v % 2 == 0) yield v
The above line results in:
Getting 1!
Getting 2!
Getting 3!
Getting 4!
r1: List[Int] = List(2, 4)
...meaning that all elements were accessed. That makes sense, given that the resulting list contains all even numbers. Let's iterate over an iterator this time:
val r2 = (for(e <- l.toIterator; val v = e() ; if v % 2 == 0) yield v)
This results in:
Getting 1!
Getting 2!
r2: Iterator[Int] = non-empty iterator
Notice that the loop was executed only up to the point were it could figure out whether the result was an empty or non-empty iterator.
To get the first result, you can now simply call r2.next.
If you want a result of an Option type, use:
if(r2.hasNext) Some(r2.next) else None
Edit Your second example in this encoding is just:
val seven = (for {
x <- (1 to 10).toIterator
if x == 7
} yield x).next
...of course, you should be sure that there is always at least a solution if you're going to use .next. Alternatively, use headOption, defined for all Traversables, to get an Option[Int].
You can turn your list into a stream, so that any filters that the for-loop contains are only evaluated on-demand. However, yielding from the stream will always return a stream, and what you want is I suppose an option, so, as a final step you can check whether the resulting stream has at least one element, and return its head as a option. The headOption function does exactly that.
def findFirst[T](objects: List[T], expensiveFunc: T => Boolean): Option[T] =
(for (obj <- objects.toStream if expensiveFunc(obj)) yield obj).headOption
Why not do exactly what you sketched above, that is, return from the loop early? If you are interested in what Scala actually does under the hood, run your code with -print. Scala desugares the loop into a foreach and then uses an exception to leave the foreach prematurely.
So what you are trying to do is to break out a loop after your condition is satisfied. Answer here might be what you are looking for. How do I break out of a loop in Scala?.
Overall, for comprehension in Scala is translated into map, flatmap and filter operations. So it will not be possible to break out of these functions unless you throw an exception.
If you are wondering, this is how find is implemented in LineerSeqOptimized.scala; which List inherits
override /*IterableLike*/
def find(p: A => Boolean): Option[A] = {
var these = this
while (!these.isEmpty) {
if (p(these.head)) return Some(these.head)
these = these.tail
}
None
}
This is a horrible hack. But it would get you the result you wished for.
Idiomatically you'd use a Stream or View and just compute the parts you need.
def findFirst[T](objects: List[T]): T = {
def expensiveFunc(o : T) = // unclear what should be returned here
case class MissusedException(val data: T) extends Exception
try {
(for (obj <- objects) {
if (expensiveFunc(obj) != null) throw new MissusedException(obj)
})
objects.head // T must be returned from loop, dummy
} catch {
case MissusedException(obj) => obj
}
}
Why not something like
object Main {
def main(args: Array[String]): Unit = {
val seven = (for (
x <- 1 to 10
if x == 7
) yield x).headOption
}
}
Variable seven will be an Option holding Some(value) if value satisfies condition
I hope to help you.
I think ... no 'return' impl.
object TakeWhileLoop extends App {
println("first non-null: " + func(Seq(null, null, "x", "y", "z")))
def func[T](seq: Seq[T]): T = if (seq.isEmpty) null.asInstanceOf[T] else
seq(seq.takeWhile(_ == null).size)
}
object OptionLoop extends App {
println("first non-null: " + func(Seq(null, null, "x", "y", "z")))
def func[T](seq: Seq[T], index: Int = 0): T = if (seq.isEmpty) null.asInstanceOf[T] else
Option(seq(index)) getOrElse func(seq, index + 1)
}
object WhileLoop extends App {
println("first non-null: " + func(Seq(null, null, "x", "y", "z")))
def func[T](seq: Seq[T]): T = if (seq.isEmpty) null.asInstanceOf[T] else {
var i = 0
def obj = seq(i)
while (obj == null)
i += 1
obj
}
}
objects iterator filter { obj => (expensiveFunc(obj) != null } next
The trick is to get some lazy evaluated view on the colelction, either an iterator or a Stream, or objects.view. The filter will only execute as far as needed.