I use Spark 1.6.2
I have epochs like this:
+--------------+-------------------+-------------------+
|unix_timestamp|UTC |Europe/Helsinki |
+--------------+-------------------+-------------------+
|1491771599 |2017-04-09 20:59:59|2017-04-09 23:59:59|
|1491771600 |2017-04-09 21:00:00|2017-04-10 00:00:00|
|1491771601 |2017-04-09 21:00:01|2017-04-10 00:00:01|
+--------------+-------------------+-------------------+
The default timezone is the following on the Spark machines:
#timezone = DefaultTz: Europe/Prague, SparkUtilTz: Europe/Prague
the output of
logger.info("#timezone = DefaultTz: {}, SparkUtilTz: {}", TimeZone.getDefault.getID, org.apache.spark.sql.catalyst.util.DateTimeUtils.defaultTimeZone.getID)
I want to count the timestamps grouped by date and hour in the given timezone (now it is Europe/Helsinki +3hours).
What I expect:
+----------+---------+-----+
|date |hour |count|
+----------+---------+-----+
|2017-04-09|23 |1 |
|2017-04-10|0 |2 |
+----------+---------+-----+
Code (using from_utc_timestamp):
def getCountsPerTime(sqlContext: SQLContext, inputDF: DataFrame, timeZone: String, aggr: String): DataFrame = {
import sqlContext.implicits._
val onlyTime = inputDF.select(
from_utc_timestamp($"unix_timestamp".cast(DataTypes.TimestampType), timeZone).alias("time")
)
val visitsPerTime =
if (aggr.equalsIgnoreCase("hourly")) {
onlyTime.groupBy(
date_format($"time", "yyyy-MM-dd").alias("date"),
date_format($"time", "H").cast(DataTypes.IntegerType).alias("hour"),
).count()
} else if (aggr.equalsIgnoreCase("daily")) {
onlyTime.groupBy(
date_format($"time", "yyyy-MM-dd").alias("date")
).count()
}
visitsPerTime.show(false)
visitsPerTime
}
What I get:
+----------+---------+-----+
|date |hour |count|
+----------+---------+-----+
|2017-04-09|22 |1 |
|2017-04-09|23 |2 |
+----------+---------+-----+
Trying to wrap it with to_utc_timestamp:
def getCountsPerTime(sqlContext: SQLContext, inputDF: DataFrame, timeZone: String, aggr: String): DataFrame = {
import sqlContext.implicits._
val onlyTime = inputDF.select(
to_utc_timestamp(from_utc_timestamp($"unix_timestamp".cast(DataTypes.TimestampType), timeZone), DateTimeUtils.defaultTimeZone.getID).alias("time")
)
val visitsPerTime = ... //same as above
visitsPerTime.show(false)
visitsPerTime
}
What I get:
+----------+---------+-----+
|tradedate |tradehour|count|
+----------+---------+-----+
|2017-04-09|20 |1 |
|2017-04-09|21 |2 |
+----------+---------+-----+
How to get the expected result?
Your codes are not working for me so I couldn't replicate the last two outputs you got.
But I am going to provide you some hints on how you can achieve the output you expected
I am assuming you already have dataframe as
+--------------+---------------------+---------------------+
|unix_timestamp|UTC |Europe/Helsinki |
+--------------+---------------------+---------------------+
|1491750899 |2017-04-09 20:59:59.0|2017-04-09 23:59:59.0|
|1491750900 |2017-04-09 21:00:00.0|2017-04-10 00:00:00.0|
|1491750901 |2017-04-09 21:00:01.0|2017-04-10 00:00:01.0|
+--------------+---------------------+---------------------+
I got this dataframe by using following code
import sqlContext.implicits._
import org.apache.spark.sql.functions._
val inputDF = Seq(
"2017-04-09 20:59:59",
"2017-04-09 21:00:00",
"2017-04-09 21:00:01"
).toDF("unix_timestamp")
val onlyTime = inputDF.select(
unix_timestamp($"unix_timestamp").alias("unix_timestamp"),
from_utc_timestamp($"unix_timestamp".cast(DataTypes.TimestampType), "UTC").alias("UTC"),
from_utc_timestamp($"unix_timestamp".cast(DataTypes.TimestampType), "Europe/Helsinki").alias("Europe/Helsinki")
)
onlyTime.show(false)
Once you have above dataframe, getting the output dataframe that you desire would require you to split the date, groupby and count as below
onlyTime.select(split($"Europe/Helsinki", " ")(0).as("date"), split(split($"Europe/Helsinki", " ")(1).as("time"), ":")(0).as("hour"))
.groupBy("date", "hour").agg(count("date").as("count"))
.show(false)
The resulting dataframe is
+----------+----+-----+
|date |hour|count|
+----------+----+-----+
|2017-04-09|23 |1 |
|2017-04-10|00 |2 |
+----------+----+-----+
Setting "spark.sql.session.timeZone" before the action seems to be reliable. Using this setting we can be sure that the timestamps that we use afterwards- does actually represent the time in the specified time zone. Without it (if we use from_unixtime or timestamp_seconds) we can't be sure which time zone is represented. Both those functions represent the current system time zone. And if afterwards we used to_utc_timestamp or from_utc_timestamp, we would only get a shift from the current system time zone. UTC does not necessarily come into play with the latter functions. This is why explicitly setting a time zone can be reliable. One thing to keep in mind is that the action(s) must be performed before spark.conf.unset("spark.sql.session.timeZone").
Scala
Input df:
import spark.implicits._
import org.apache.spark.sql.functions._
val inputDF = Seq(1491771599L,1491771600L,1491771601L).toDF("unix_timestamp")
inputDF.show()
// +--------------+
// |unix_timestamp|
// +--------------+
// | 1491771599|
// | 1491771600|
// | 1491771601|
// +--------------+
Result:
spark.conf.set("spark.sql.session.timeZone", "Europe/Helsinki")
val ts = from_unixtime($"unix_timestamp")
val DF = inputDF.groupBy(to_date(ts).alias("date"), hour(ts).alias("hour")).count()
DF.show()
// +----------+----+-----+
// | date|hour|count|
// +----------+----+-----+
// |2017-04-09| 23| 1|
// |2017-04-10| 0| 2|
// +----------+----+-----+
spark.conf.unset("spark.sql.session.timeZone")
PySpark
Input df:
from pyspark.sql import SparkSession, functions as F
spark = SparkSession.builder.getOrCreate()
df = spark.createDataFrame([(1491771599,),(1491771600,),(1491771601,)], ['unix_timestamp'])
df.show()
# +--------------+
# |unix_timestamp|
# +--------------+
# | 1491771599|
# | 1491771600|
# | 1491771601|
# +--------------+
Result:
spark.conf.set("spark.sql.session.timeZone", "Europe/Helsinki")
ts = F.from_unixtime('unix_timestamp')
df_agg = df.groupBy(F.to_date(ts).alias('date'), F.hour(ts).alias('hour')).count()
df_agg.show()
# +----------+----+-----+
# | date|hour|count|
# +----------+----+-----+
# |2017-04-09| 23| 1|
# |2017-04-10| 0| 2|
# +----------+----+-----+
spark.conf.unset("spark.sql.session.timeZone")
Related
Create a DataFrame from csv file, process each row, want to create a new row with the same number of columns.
val df = spark.read.format("csv").load("data.csv")
def process(line: Row) : Seq[String] = {
val list = new ArrayList[String]
for (i <- 0 to line.size-1) {
list.add(line.getString(i).toUpperCase)
}
list.asScala.toSeq
}
val df2 = df.map(process(_))
df2.show
Expecting/hope-to-get:
+---+---+---+
| _1| _2| _3|
+---+---+---+
| X1| X2| X3|
| Y1| Y2| Y3|
+---+---+---+
Getting:
+------------+
| value|
+------------+
|[X1, X2, X3]|
|[Y1, Y2, Y3]|
+------------+
Input file data.csv:
x1,x2,x3
y1,y2,y3
Note that the code should work in this input file as well:
x1,x2,x3,x4
y1,y2,y3,y4
And for this input file, I'd like to see result
+---+---+---+---+
| _1| _2| _3| _4|
+---+---+---+---+
| X1| X2| X3| X4|
| Y1| Y2| Y3| Y4|
+---+---+---+---+
Please note that I used tpUpperCase() in process() just to make the simple example to work. The real logic in process() can be a lot more complex.
Second Update to Change rdd to Row
#USML , basically changed Seq[String] to Row so that rdd can be paralellized. it's a distributed parallel collection that needs to be serialized
val df2 = csvDf.rdd.map(process(_)).map(a => Row.fromSeq(a))
//df2: org.apache.spark.rdd.RDD[org.apache.spark.sql.Row]
// And we use dynamic Schema (e.g. same number of columns as csv
spark.createDataFrame(df2, schema = dynamicSchema).show(false)
+---+---+---+
|_c0|_c1|_c2|
+---+---+---+
|X1 |X2 |X3 |
|Y1 |Y2 |Y3 |
+---+---+---+
Update on Changed Requirement
As long as you are reading the CSV , end output will have same numbers of columns as your csv as we are using df.schema to create dataframe after calling process method. Try this:
val df = spark.read.format("csv").load("data.csv")
val dynamicSchema = df.schema // This makes sure to prserve same number of columns
def process(line: Row) : Seq[String] = {
val list = new ArrayList[String]
for (i <- 0 to line.size-1) {
list.add(line.getString(i).toUpperCase)
}
list.asScala.toSeq
}
val df2 = df.rdd.map(process(_)).map(a => Row.fromSeq(a)) // df2 is actually an RDD // updated conversion to Row
val finalDf = spark.createDataFrame(df2, schema = dynamicSchema) // We use same schema
finalDf.show(false)
File Contents =>
cat data.csv
a1,b1,c1,d1
a2,b2,c2,d2
Code =>
import org.apache.spark.sql.Row
val csvDf = spark.read.csv("data.csv")
csvDf.show(false)
+---+---+---+---+
|_c0|_c1|_c2|_c3|
+---+---+---+---+
|a1 |b1 |c1 |d1 |
|a2 |b2 |c2 |d2 |
+---+---+---+---+
def process(cols: Row): Row = { Row("a", "b", "c","d") } // Check the Data Type
val df2 = csvDf.rdd.map(process(_)) // df2: org.apache.spark.rdd.RDD[org.apache.spark.sql.Row]
val finalDf = spark.createDataFrame(df2,schema = csvDf.schema)
finalDf.show(false)
+---+---+---+---+
|_c0|_c1|_c2|_c3|
+---+---+---+---+
|a |b |c |d |
|a |b |c |d |
+---+---+---+---+
Points to note Row data type is needed to Map a Row
Better practice to have a type safe case class
Rest should be easy
I just used Standard Scaler to normalize my features for a ML application. After selecting the scaled features, I want to convert this back to a dataframe of Doubles, though the length of my vectors are arbitrary. I know how to do it for a specific 3 features by using
myDF.map{case Row(v: Vector) => (v(0), v(1), v(2))}.toDF("f1", "f2", "f3")
but not for an arbitrary amount of features. Is there an easy way to do this?
Example:
val testDF = sc.parallelize(List(Vectors.dense(5D, 6D, 7D), Vectors.dense(8D, 9D, 10D), Vectors.dense(11D, 12D, 13D))).map(Tuple1(_)).toDF("scaledFeatures")
val myColumnNames = List("f1", "f2", "f3")
// val finalDF = DataFrame[f1: Double, f2: Double, f3: Double]
EDIT
I found out how to unpack to column names when creating the dataframe, but still am having trouble converting a vector to a sequence needed to create the dataframe:
finalDF = testDF.map{case Row(v: Vector) => v.toArray.toSeq /* <= this errors */}.toDF(List("f1", "f2", "f3"): _*)
Spark >= 3.0.0
Since Spark 3.0 you can use vector_to_array
import org.apache.spark.ml.functions.vector_to_array
testDF.select(vector_to_array($"scaledFeatures").alias("_tmp")).select(exprs:_*)
Spark < 3.0.0
One possible approach is something similar to this
import org.apache.spark.sql.functions.udf
// In Spark 1.x you'll will have to replace ML Vector with MLLib one
// import org.apache.spark.mllib.linalg.Vector
// In 2.x the below is usually the right choice
import org.apache.spark.ml.linalg.Vector
// Get size of the vector
val n = testDF.first.getAs[Vector](0).size
// Simple helper to convert vector to array<double>
// asNondeterministic is available in Spark 2.3 or befor
// It can be removed, but at the cost of decreased performance
val vecToSeq = udf((v: Vector) => v.toArray).asNondeterministic
// Prepare a list of columns to create
val exprs = (0 until n).map(i => $"_tmp".getItem(i).alias(s"f$i"))
testDF.select(vecToSeq($"scaledFeatures").alias("_tmp")).select(exprs:_*)
If you know a list of columns upfront you can simplify this a little:
val cols: Seq[String] = ???
val exprs = cols.zipWithIndex.map{ case (c, i) => $"_tmp".getItem(i).alias(c) }
For Python equivalent see How to split Vector into columns - using PySpark.
Please try VectorSlicer :
import org.apache.spark.ml.feature.VectorAssembler
import org.apache.spark.ml.linalg.Vectors
val dataset = spark.createDataFrame(
Seq((1, 0.2, 0.8), (2, 0.1, 0.9), (3, 0.3, 0.7))
).toDF("id", "negative_logit", "positive_logit")
val assembler = new VectorAssembler()
.setInputCols(Array("negative_logit", "positive_logit"))
.setOutputCol("prediction")
val output = assembler.transform(dataset)
output.show()
/*
+---+--------------+--------------+----------+
| id|negative_logit|positive_logit|prediction|
+---+--------------+--------------+----------+
| 1| 0.2| 0.8| [0.2,0.8]|
| 2| 0.1| 0.9| [0.1,0.9]|
| 3| 0.3| 0.7| [0.3,0.7]|
+---+--------------+--------------+----------+
*/
val slicer = new VectorSlicer()
.setInputCol("prediction")
.setIndices(Array(1))
.setOutputCol("positive_prediction")
val posi_output = slicer.transform(output)
posi_output.show()
/*
+---+--------------+--------------+----------+-------------------+
| id|negative_logit|positive_logit|prediction|positive_prediction|
+---+--------------+--------------+----------+-------------------+
| 1| 0.2| 0.8| [0.2,0.8]| [0.8]|
| 2| 0.1| 0.9| [0.1,0.9]| [0.9]|
| 3| 0.3| 0.7| [0.3,0.7]| [0.7]|
+---+--------------+--------------+----------+-------------------+
*/
Alternate solution that evovled couple of days ago: Import the VectorDisassembler into your project (as long as it's not merged into Spark), now:
import org.apache.spark.ml.feature.VectorAssembler
import org.apache.spark.ml.linalg.Vectors
val dataset = spark.createDataFrame(
Seq((0, 1.2, 1.3), (1, 2.2, 2.3), (2, 3.2, 3.3))
).toDF("id", "val1", "val2")
val assembler = new VectorAssembler()
.setInputCols(Array("val1", "val2"))
.setOutputCol("vectorCol")
val output = assembler.transform(dataset)
output.show()
/*
+---+----+----+---------+
| id|val1|val2|vectorCol|
+---+----+----+---------+
| 0| 1.2| 1.3|[1.2,1.3]|
| 1| 2.2| 2.3|[2.2,2.3]|
| 2| 3.2| 3.3|[3.2,3.3]|
+---+----+----+---------+*/
val disassembler = new org.apache.spark.ml.feature.VectorDisassembler()
.setInputCol("vectorCol")
disassembler.transform(output).show()
/*
+---+----+----+---------+----+----+
| id|val1|val2|vectorCol|val1|val2|
+---+----+----+---------+----+----+
| 0| 1.2| 1.3|[1.2,1.3]| 1.2| 1.3|
| 1| 2.2| 2.3|[2.2,2.3]| 2.2| 2.3|
| 2| 3.2| 3.3|[3.2,3.3]| 3.2| 3.3|
+---+----+----+---------+----+----+*/
I use Spark 2.3.2, and built a xgboost4j binary-classification model, the result looks like this:
results_train.select("classIndex","probability","prediction").show(3,0)
+----------+----------------------------------------+----------+
|classIndex|probability |prediction|
+----------+----------------------------------------+----------+
|1 |[0.5998525619506836,0.400147408246994] |0.0 |
|1 |[0.5487841367721558,0.45121586322784424]|0.0 |
|0 |[0.5555324554443359,0.44446757435798645]|0.0 |
I define the following udf to get the elements out of vector column probability
import org.apache.spark.sql.functions._
def getProb = udf((probV: org.apache.spark.ml.linalg.Vector, clsInx: Int) => probV.apply(clsInx) )
results_train.select("classIndex","probability","prediction").
withColumn("p_0",getProb($"probability",lit(0))).
withColumn("p_1",getProb($"probability", lit(1))).show(3,0)
+----------+----------------------------------------+----------+------------------+-------------------+
|classIndex|probability |prediction|p_0 |p_1 |
+----------+----------------------------------------+----------+------------------+-------------------+
|1 |[0.5998525619506836,0.400147408246994] |0.0 |0.5998525619506836|0.400147408246994 |
|1 |[0.5487841367721558,0.45121586322784424]|0.0 |0.5487841367721558|0.45121586322784424|
|0 |[0.5555324554443359,0.44446757435798645]|0.0 |0.5555324554443359|0.44446757435798645|
Hope this would help for those who handle with Vector type input.
Since the above answers need additional libraries or still not supported, I have used pandas dataframe to easity extract the vector values and then convert it back to spark dataframe.
# convert to pandas dataframe
pandasDf = dataframe.toPandas()
# add a new column
pandasDf['newColumnName'] = 0 # filled the new column with 0s
# now iterate through the rows and update the column
for index, row in pandasDf.iterrows():
value = row['vectorCol'][0] # get the 0th value of the vector
pandasDf.loc[index, 'newColumnName'] = value # put the value in the new column
I've a spark data frame with columns - "date" of type timestamp and "quantity" of type long. For each date, I've some value for quantity. The dates are sorted in increasing order. But there are some dates which are missing.
For eg -
Current df -
Date | Quantity
10-09-2016 | 1
11-09-2016 | 2
14-09-2016 | 0
16-09-2016 | 1
17-09-2016 | 0
20-09-2016 | 2
As you can see, the df has some missing dates like 12-09-2016, 13-09-2016 etc. I want to put 0 in the quantity field for those missing dates such that resultant df should look like -
Date | Quantity
10-09-2016 | 1
11-09-2016 | 2
12-09-2016 | 0
13-09-2016 | 0
14-09-2016 | 0
15-09-2016 | 0
16-09-2016 | 1
17-09-2016 | 0
18-09-2016 | 0
19-09-2016 | 0
20-09-2016 | 2
Any help/suggestion regarding this will be appreciated. Thanks in advance.
Note that I am coding in scala.
I have written this answer in a bit verbose way for easy understanding of the code. It can be optimized.
Needed imports
import java.time.format.DateTimeFormatter
import java.time.{LocalDate, LocalDateTime}
import org.apache.spark.sql.expressions.Window
import org.apache.spark.sql.functions._
import org.apache.spark.sql.types.{LongType, TimestampType}
UDFs for String to Valid date format
val date_transform = udf((date: String) => {
val dtFormatter = DateTimeFormatter.ofPattern("d-M-y")
val dt = LocalDate.parse(date, dtFormatter)
"%4d-%2d-%2d".format(dt.getYear, dt.getMonthValue, dt.getDayOfMonth)
.replaceAll(" ", "0")
})
Below UDF code taken from Iterate over dates range
def fill_dates = udf((start: String, excludedDiff: Int) => {
val dtFormatter = DateTimeFormatter.ofPattern("yyyy-MM-dd HH:mm:ss")
val fromDt = LocalDateTime.parse(start, dtFormatter)
(1 to (excludedDiff - 1)).map(day => {
val dt = fromDt.plusDays(day)
"%4d-%2d-%2d".format(dt.getYear, dt.getMonthValue, dt.getDayOfMonth)
.replaceAll(" ", "0")
})
})
Setting up sample dataframe (df)
val df = Seq(
("10-09-2016", 1),
("11-09-2016", 2),
("14-09-2016", 0),
("16-09-2016", 1),
("17-09-2016", 0),
("20-09-2016", 2)).toDF("date", "quantity")
.withColumn("date", date_transform($"date").cast(TimestampType))
.withColumn("quantity", $"quantity".cast(LongType))
df.printSchema()
root
|-- date: timestamp (nullable = true)
|-- quantity: long (nullable = false)
df.show()
+-------------------+--------+
| date|quantity|
+-------------------+--------+
|2016-09-10 00:00:00| 1|
|2016-09-11 00:00:00| 2|
|2016-09-14 00:00:00| 0|
|2016-09-16 00:00:00| 1|
|2016-09-17 00:00:00| 0|
|2016-09-20 00:00:00| 2|
+-------------------+--------+
Create a temporary dataframe(tempDf) to union with df:
val w = Window.orderBy($"date")
val tempDf = df.withColumn("diff", datediff(lead($"date", 1).over(w), $"date"))
.filter($"diff" > 1) // Pick date diff more than one day to generate our date
.withColumn("next_dates", fill_dates($"date", $"diff"))
.withColumn("quantity", lit("0"))
.withColumn("date", explode($"next_dates"))
.withColumn("date", $"date".cast(TimestampType))
tempDf.show(false)
+-------------------+--------+----+------------------------+
|date |quantity|diff|next_dates |
+-------------------+--------+----+------------------------+
|2016-09-12 00:00:00|0 |3 |[2016-09-12, 2016-09-13]|
|2016-09-13 00:00:00|0 |3 |[2016-09-12, 2016-09-13]|
|2016-09-15 00:00:00|0 |2 |[2016-09-15] |
|2016-09-18 00:00:00|0 |3 |[2016-09-18, 2016-09-19]|
|2016-09-19 00:00:00|0 |3 |[2016-09-18, 2016-09-19]|
+-------------------+--------+----+------------------------+
Now union two dataframes
val result = df.union(tempDf.select("date", "quantity"))
.orderBy("date")
result.show()
+-------------------+--------+
| date|quantity|
+-------------------+--------+
|2016-09-10 00:00:00| 1|
|2016-09-11 00:00:00| 2|
|2016-09-12 00:00:00| 0|
|2016-09-13 00:00:00| 0|
|2016-09-14 00:00:00| 0|
|2016-09-15 00:00:00| 0|
|2016-09-16 00:00:00| 1|
|2016-09-17 00:00:00| 0|
|2016-09-18 00:00:00| 0|
|2016-09-19 00:00:00| 0|
|2016-09-20 00:00:00| 2|
+-------------------+--------+
Based on the #mrsrinivas excellent answer, here is the PySpark version.
Needed imports
from typing import List
import datetime
from pyspark.sql import DataFrame, Window
from pyspark.sql.functions import col, lit, udf, datediff, lead, explode
from pyspark.sql.types import DateType, ArrayType
UDF to create the range of next dates
def _get_next_dates(start_date: datetime.date, diff: int) -> List[datetime.date]:
return [start_date + datetime.timedelta(days=days) for days in range(1, diff)]
Function the create the DateFrame filling the dates (support "grouping" columns):
def _get_fill_dates_df(df: DataFrame, date_column: str, group_columns: List[str], fill_column: str) -> DataFrame:
get_next_dates_udf = udf(_get_next_dates, ArrayType(DateType()))
window = Window.orderBy(*group_columns, date_column)
return df.withColumn("_diff", datediff(lead(date_column, 1).over(window), date_column)) \
.filter(col("_diff") > 1).withColumn("_next_dates", get_next_dates_udf(date_column, "_diff")) \
.withColumn(fill_column, lit("0")).withColumn(date_column, explode("_next_dates")) \
.drop("_diff", "_next_dates")
The usage of the function:
fill_df = _get_fill_dates_df(df, "Date", [], "Quantity")
df = df.union(fill_df)
It assumes that the date column is already in date type.
Here is a slight modification, to use this function with months and enter measure columns (columns that should be set to zero) instead of group columns:
from typing import List
import datetime
from dateutil import relativedelta
import math
import pyspark.sql.functions as f
from pyspark.sql import DataFrame, Window
from pyspark.sql.types import DateType, ArrayType
def fill_time_gaps_date_diff_based(df: pyspark.sql.dataframe.DataFrame, measure_columns: list, date_column: str):
group_columns = [col for col in df.columns if col not in [date_column]+measure_columns]
# save measure sums for qc
qc = df.agg({col: 'sum' for col in measure_columns}).collect()
# convert month to date
convert_int_to_date = f.udf(lambda mth: datetime.datetime(year=math.floor(mth/100), month=mth%100, day=1), DateType())
df = df.withColumn(date_column, convert_int_to_date(date_column))
# sort values
df = df.orderBy(group_columns)
# get_fill_dates_df (instead of months_between also use date_diff for days)
window = Window.orderBy(*group_columns, date_column)
# calculate diff column
fill_df = df.withColumn(
"_diff",
f.months_between(f.lead(date_column, 1).over(window), date_column).cast(IntegerType())
).filter(
f.col("_diff") > 1
)
# generate next dates
def _get_next_dates(start_date: datetime.date, diff: int) -> List[datetime.date]:
return [
start_date + relativedelta.relativedelta(months=months)
for months in range(1, diff)
]
get_next_dates_udf = f.udf(_get_next_dates, ArrayType(DateType()))
fill_df = fill_df.withColumn(
"_next_dates",
get_next_dates_udf(date_column, "_diff")
)
# set measure columns to 0
for col in measure_columns:
fill_df = fill_df.withColumn(col, f.lit(0))
# explode next_dates column
fill_df = fill_df.withColumn(date_column, f.explode('_next_dates'))
# drop unneccessary columns
fill_df = fill_df.drop(
"_diff",
"_next_dates"
)
# union df with fill_df
df = df.union(fill_df)
# qc: should be removed for productive runs
if qc != df.agg({col: 'sum' for col in measure_columns}).collect():
raise ValueError('Sums before and after run do not fit.')
return df
Please note, that I assume that the month is given as Integer in the form YYYYMM. This could easily be adjusted by modifying the "convert month to date" part.
I am new to UDF in spark. I have also read the answer here
Problem statement: I'm trying to find pattern matching from a dataframe col.
Ex: Dataframe
val df = Seq((1, Some("z")), (2, Some("abs,abc,dfg")),
(3,Some("a,b,c,d,e,f,abs,abc,dfg"))).toDF("id", "text")
df.show()
+---+--------------------+
| id| text|
+---+--------------------+
| 1| z|
| 2| abs,abc,dfg|
| 3|a,b,c,d,e,f,abs,a...|
+---+--------------------+
df.filter($"text".contains("abs,abc,dfg")).count()
//returns 2 as abs exits in 2nd row and 3rd row
Now I want to do this pattern matching for every row in column $text and add new column called count.
Result:
+---+--------------------+-----+
| id| text|count|
+---+--------------------+-----+
| 1| z| 1|
| 2| abs,abc,dfg| 2|
| 3|a,b,c,d,e,f,abs,a...| 1|
+---+--------------------+-----+
I tried to define a udf passing $text column as Array[Seq[String]. But I am not able to get what I intended.
What I tried so far:
val txt = df.select("text").collect.map(_.toSeq.map(_.toString)) //convert column to Array[Seq[String]
val valsum = udf((txt:Array[Seq[String],pattern:String)=> {txt.count(_ == pattern) } )
df.withColumn("newCol", valsum( lit(txt) ,df(text)) )).show()
Any help would be appreciated
You will have to know all the elements of text column which can be done using collect_list by grouping all the rows of your dataframe as one. Then just check if element in text column in the collected array and count them as in the following code.
import sqlContext.implicits._
import org.apache.spark.sql.functions._
import org.apache.spark.sql.expressions._
val df = Seq((1, Some("z")), (2, Some("abs,abc,dfg")),(3,Some("a,b,c,d,e,f,abs,abc,dfg"))).toDF("id", "text")
val valsum = udf((txt: String, array : mutable.WrappedArray[String])=> array.filter(element => element.contains(txt)).size)
df.withColumn("grouping", lit("g"))
.withColumn("array", collect_list("text").over(Window.partitionBy("grouping")))
.withColumn("count", valsum($"text", $"array"))
.drop("grouping", "array")
.show(false)
You should have following output
+---+-----------------------+-----+
|id |text |count|
+---+-----------------------+-----+
|1 |z |1 |
|2 |abs,abc,dfg |2 |
|3 |a,b,c,d,e,f,abs,abc,dfg|1 |
+---+-----------------------+-----+
I hope this is helpful.
I just used Standard Scaler to normalize my features for a ML application. After selecting the scaled features, I want to convert this back to a dataframe of Doubles, though the length of my vectors are arbitrary. I know how to do it for a specific 3 features by using
myDF.map{case Row(v: Vector) => (v(0), v(1), v(2))}.toDF("f1", "f2", "f3")
but not for an arbitrary amount of features. Is there an easy way to do this?
Example:
val testDF = sc.parallelize(List(Vectors.dense(5D, 6D, 7D), Vectors.dense(8D, 9D, 10D), Vectors.dense(11D, 12D, 13D))).map(Tuple1(_)).toDF("scaledFeatures")
val myColumnNames = List("f1", "f2", "f3")
// val finalDF = DataFrame[f1: Double, f2: Double, f3: Double]
EDIT
I found out how to unpack to column names when creating the dataframe, but still am having trouble converting a vector to a sequence needed to create the dataframe:
finalDF = testDF.map{case Row(v: Vector) => v.toArray.toSeq /* <= this errors */}.toDF(List("f1", "f2", "f3"): _*)
Spark >= 3.0.0
Since Spark 3.0 you can use vector_to_array
import org.apache.spark.ml.functions.vector_to_array
testDF.select(vector_to_array($"scaledFeatures").alias("_tmp")).select(exprs:_*)
Spark < 3.0.0
One possible approach is something similar to this
import org.apache.spark.sql.functions.udf
// In Spark 1.x you'll will have to replace ML Vector with MLLib one
// import org.apache.spark.mllib.linalg.Vector
// In 2.x the below is usually the right choice
import org.apache.spark.ml.linalg.Vector
// Get size of the vector
val n = testDF.first.getAs[Vector](0).size
// Simple helper to convert vector to array<double>
// asNondeterministic is available in Spark 2.3 or befor
// It can be removed, but at the cost of decreased performance
val vecToSeq = udf((v: Vector) => v.toArray).asNondeterministic
// Prepare a list of columns to create
val exprs = (0 until n).map(i => $"_tmp".getItem(i).alias(s"f$i"))
testDF.select(vecToSeq($"scaledFeatures").alias("_tmp")).select(exprs:_*)
If you know a list of columns upfront you can simplify this a little:
val cols: Seq[String] = ???
val exprs = cols.zipWithIndex.map{ case (c, i) => $"_tmp".getItem(i).alias(c) }
For Python equivalent see How to split Vector into columns - using PySpark.
Please try VectorSlicer :
import org.apache.spark.ml.feature.VectorAssembler
import org.apache.spark.ml.linalg.Vectors
val dataset = spark.createDataFrame(
Seq((1, 0.2, 0.8), (2, 0.1, 0.9), (3, 0.3, 0.7))
).toDF("id", "negative_logit", "positive_logit")
val assembler = new VectorAssembler()
.setInputCols(Array("negative_logit", "positive_logit"))
.setOutputCol("prediction")
val output = assembler.transform(dataset)
output.show()
/*
+---+--------------+--------------+----------+
| id|negative_logit|positive_logit|prediction|
+---+--------------+--------------+----------+
| 1| 0.2| 0.8| [0.2,0.8]|
| 2| 0.1| 0.9| [0.1,0.9]|
| 3| 0.3| 0.7| [0.3,0.7]|
+---+--------------+--------------+----------+
*/
val slicer = new VectorSlicer()
.setInputCol("prediction")
.setIndices(Array(1))
.setOutputCol("positive_prediction")
val posi_output = slicer.transform(output)
posi_output.show()
/*
+---+--------------+--------------+----------+-------------------+
| id|negative_logit|positive_logit|prediction|positive_prediction|
+---+--------------+--------------+----------+-------------------+
| 1| 0.2| 0.8| [0.2,0.8]| [0.8]|
| 2| 0.1| 0.9| [0.1,0.9]| [0.9]|
| 3| 0.3| 0.7| [0.3,0.7]| [0.7]|
+---+--------------+--------------+----------+-------------------+
*/
Alternate solution that evovled couple of days ago: Import the VectorDisassembler into your project (as long as it's not merged into Spark), now:
import org.apache.spark.ml.feature.VectorAssembler
import org.apache.spark.ml.linalg.Vectors
val dataset = spark.createDataFrame(
Seq((0, 1.2, 1.3), (1, 2.2, 2.3), (2, 3.2, 3.3))
).toDF("id", "val1", "val2")
val assembler = new VectorAssembler()
.setInputCols(Array("val1", "val2"))
.setOutputCol("vectorCol")
val output = assembler.transform(dataset)
output.show()
/*
+---+----+----+---------+
| id|val1|val2|vectorCol|
+---+----+----+---------+
| 0| 1.2| 1.3|[1.2,1.3]|
| 1| 2.2| 2.3|[2.2,2.3]|
| 2| 3.2| 3.3|[3.2,3.3]|
+---+----+----+---------+*/
val disassembler = new org.apache.spark.ml.feature.VectorDisassembler()
.setInputCol("vectorCol")
disassembler.transform(output).show()
/*
+---+----+----+---------+----+----+
| id|val1|val2|vectorCol|val1|val2|
+---+----+----+---------+----+----+
| 0| 1.2| 1.3|[1.2,1.3]| 1.2| 1.3|
| 1| 2.2| 2.3|[2.2,2.3]| 2.2| 2.3|
| 2| 3.2| 3.3|[3.2,3.3]| 3.2| 3.3|
+---+----+----+---------+----+----+*/
I use Spark 2.3.2, and built a xgboost4j binary-classification model, the result looks like this:
results_train.select("classIndex","probability","prediction").show(3,0)
+----------+----------------------------------------+----------+
|classIndex|probability |prediction|
+----------+----------------------------------------+----------+
|1 |[0.5998525619506836,0.400147408246994] |0.0 |
|1 |[0.5487841367721558,0.45121586322784424]|0.0 |
|0 |[0.5555324554443359,0.44446757435798645]|0.0 |
I define the following udf to get the elements out of vector column probability
import org.apache.spark.sql.functions._
def getProb = udf((probV: org.apache.spark.ml.linalg.Vector, clsInx: Int) => probV.apply(clsInx) )
results_train.select("classIndex","probability","prediction").
withColumn("p_0",getProb($"probability",lit(0))).
withColumn("p_1",getProb($"probability", lit(1))).show(3,0)
+----------+----------------------------------------+----------+------------------+-------------------+
|classIndex|probability |prediction|p_0 |p_1 |
+----------+----------------------------------------+----------+------------------+-------------------+
|1 |[0.5998525619506836,0.400147408246994] |0.0 |0.5998525619506836|0.400147408246994 |
|1 |[0.5487841367721558,0.45121586322784424]|0.0 |0.5487841367721558|0.45121586322784424|
|0 |[0.5555324554443359,0.44446757435798645]|0.0 |0.5555324554443359|0.44446757435798645|
Hope this would help for those who handle with Vector type input.
Since the above answers need additional libraries or still not supported, I have used pandas dataframe to easity extract the vector values and then convert it back to spark dataframe.
# convert to pandas dataframe
pandasDf = dataframe.toPandas()
# add a new column
pandasDf['newColumnName'] = 0 # filled the new column with 0s
# now iterate through the rows and update the column
for index, row in pandasDf.iterrows():
value = row['vectorCol'][0] # get the 0th value of the vector
pandasDf.loc[index, 'newColumnName'] = value # put the value in the new column