Create a DataFrame from csv file, process each row, want to create a new row with the same number of columns.
val df = spark.read.format("csv").load("data.csv")
def process(line: Row) : Seq[String] = {
val list = new ArrayList[String]
for (i <- 0 to line.size-1) {
list.add(line.getString(i).toUpperCase)
}
list.asScala.toSeq
}
val df2 = df.map(process(_))
df2.show
Expecting/hope-to-get:
+---+---+---+
| _1| _2| _3|
+---+---+---+
| X1| X2| X3|
| Y1| Y2| Y3|
+---+---+---+
Getting:
+------------+
| value|
+------------+
|[X1, X2, X3]|
|[Y1, Y2, Y3]|
+------------+
Input file data.csv:
x1,x2,x3
y1,y2,y3
Note that the code should work in this input file as well:
x1,x2,x3,x4
y1,y2,y3,y4
And for this input file, I'd like to see result
+---+---+---+---+
| _1| _2| _3| _4|
+---+---+---+---+
| X1| X2| X3| X4|
| Y1| Y2| Y3| Y4|
+---+---+---+---+
Please note that I used tpUpperCase() in process() just to make the simple example to work. The real logic in process() can be a lot more complex.
Second Update to Change rdd to Row
#USML , basically changed Seq[String] to Row so that rdd can be paralellized. it's a distributed parallel collection that needs to be serialized
val df2 = csvDf.rdd.map(process(_)).map(a => Row.fromSeq(a))
//df2: org.apache.spark.rdd.RDD[org.apache.spark.sql.Row]
// And we use dynamic Schema (e.g. same number of columns as csv
spark.createDataFrame(df2, schema = dynamicSchema).show(false)
+---+---+---+
|_c0|_c1|_c2|
+---+---+---+
|X1 |X2 |X3 |
|Y1 |Y2 |Y3 |
+---+---+---+
Update on Changed Requirement
As long as you are reading the CSV , end output will have same numbers of columns as your csv as we are using df.schema to create dataframe after calling process method. Try this:
val df = spark.read.format("csv").load("data.csv")
val dynamicSchema = df.schema // This makes sure to prserve same number of columns
def process(line: Row) : Seq[String] = {
val list = new ArrayList[String]
for (i <- 0 to line.size-1) {
list.add(line.getString(i).toUpperCase)
}
list.asScala.toSeq
}
val df2 = df.rdd.map(process(_)).map(a => Row.fromSeq(a)) // df2 is actually an RDD // updated conversion to Row
val finalDf = spark.createDataFrame(df2, schema = dynamicSchema) // We use same schema
finalDf.show(false)
File Contents =>
cat data.csv
a1,b1,c1,d1
a2,b2,c2,d2
Code =>
import org.apache.spark.sql.Row
val csvDf = spark.read.csv("data.csv")
csvDf.show(false)
+---+---+---+---+
|_c0|_c1|_c2|_c3|
+---+---+---+---+
|a1 |b1 |c1 |d1 |
|a2 |b2 |c2 |d2 |
+---+---+---+---+
def process(cols: Row): Row = { Row("a", "b", "c","d") } // Check the Data Type
val df2 = csvDf.rdd.map(process(_)) // df2: org.apache.spark.rdd.RDD[org.apache.spark.sql.Row]
val finalDf = spark.createDataFrame(df2,schema = csvDf.schema)
finalDf.show(false)
+---+---+---+---+
|_c0|_c1|_c2|_c3|
+---+---+---+---+
|a |b |c |d |
|a |b |c |d |
+---+---+---+---+
Points to note Row data type is needed to Map a Row
Better practice to have a type safe case class
Rest should be easy
Related
I have a DataFrame with a column 'title_from' as below.
.
This colume contains a sentence and I want to transform this column into a Array[String]. I have tried something like this but it does not works.
val newDF = df.select("title_from").map(x => x.split("\\\s+")
How can I achieve this? How can I transform a datafram of strings into a dataframe of Array[string]? I want evry line of newDF to be an array of words from df.
Thanks for any help!
You can use the withColumn function.
import org.apache.spark.sql.functions._
val newDF = df.withColumn("split_title_from", split(col("title_from"), "\\s+"))
.select("split_title_from")
Can you try following to get the list of all authors
scala> val df = Seq((1,"a1,a2,a3"), (2,"a1,a4,a10")).toDF("id","author")
df: org.apache.spark.sql.DataFrame = [id: int, author: string]
scala> df.show()
+---+---------+
| id| author|
+---+---------+
| 1| a1,a2,a3|
| 2|a1,a4,a10|
+---+---------+
scala> df.select("author").show
+---------+
| author|
+---------+
| a1,a2,a3|
|a1,a4,a10|
+---------+
scala> df.select("author").flatMap( row => { row.get(0).toString().split(",")}).show()
+-----+
|value|
+-----+
| a1|
| a2|
| a3|
| a1|
| a4|
| a10|
+-----+
I have a column named root and need to filter dataframe based on the different values of a root column.
Suppose I have a values in root are parent,child or sub-child and I want to apply these filters dynamically through a variable.
val x = ("parent,child,sub-child").split(",")
x.map(eachvalue <- {
var df1 = df.filter(col("root").contains(eachvalue))
}
But when I am doing it, it always overwriting the DF1 instead, I want to apply all the 3 filters and get the result.
May be in future I may extend the list to any number of filter values and the code should work.
Thanks,
Bab
You should apply the subsequent filters to the result of the previous filter, not on df:
val x = ("parent,child,sub-child").split(",")
var df1 = df
x.map(eachvalue <- {
df1 = df1.filter(col("root").contains(eachvalue))
}
df1 after the map operation will have all filters applied to it.
Let's see an example with spark shell. Hope it helps you.
scala> import spark.implicits._
import spark.implicits._
scala> val df0 =
spark.sparkContext.parallelize(List(1,2,1,3,3,2,1)).toDF("number")
df0: org.apache.spark.sql.DataFrame = [number: int]
scala> val list = List(1,2,3)
list: List[Int] = List(1, 2, 3)
scala> val dfFiltered = for (number <- list) yield { df0.filter($"number" === number)}
dfFiltered: List[org.apache.spark.sql.Dataset[org.apache.spark.sql.Row]] = List([number: int], [number: int], [number: int])
scala> dfFiltered(0).show
+------+
|number|
+------+
| 1|
| 1|
| 1|
+------+
scala> dfFiltered(1).show
+------+
|number|
+------+
| 2|
| 2|
+------+
scala> dfFiltered(2).show
+------+
|number|
+------+
| 3|
| 3|
+------+
AFAIK isin can be used in this case below is the example.
import spark.implicits._
val colorStringArr = "red,yellow,blue".split(",")
val colorDF =
List(
"red",
"yellow",
"purple"
).toDF("color")
// to derive a column using a list
colorDF.withColumn(
"is_primary_color",
col("color").isin(colorStringArr: _*)
).show()
println( "if you don't want derived column and directly want to filter using a list with isin then .. ")
colorDF.filter(col("color").isin(colorStringArr: _*)).show
Result :
+------+----------------+
| color|is_primary_color|
+------+----------------+
| red| true|
|yellow| true|
|purple| false|
+------+----------------+
if you don't want derived column and directly want to filter using a list with isin then ....
+------+
| color|
+------+
| red|
|yellow|
+------+
One more way using array_contains and swapping the arguments.
scala> val x = ("parent,child,sub-child").split(",")
x: Array[String] = Array(parent, child, sub-child)
scala> val df = Seq(("parent"),("grand-parent"),("child"),("sub-child"),("cousin")).toDF("root")
df: org.apache.spark.sql.DataFrame = [root: string]
scala> df.show
+------------+
| root|
+------------+
| parent|
|grand-parent|
| child|
| sub-child|
| cousin|
+------------+
scala> df.withColumn("check", array_contains(lit(x),'root)).show
+------------+-----+
| root|check|
+------------+-----+
| parent| true|
|grand-parent|false|
| child| true|
| sub-child| true|
| cousin|false|
+------------+-----+
scala>
Here are my two cents
val filters = List(1,2,3)
val data = List(5,1,2,1,3,3,2,1,4)
val colName = "number"
val df = spark.
sparkContext.
parallelize(data).
toDF(colName).
filter(
r => filters.contains(r.getAs[Int](colName))
)
df.show()
which results in
+------+
|number|
+------+
| 1|
| 2|
| 1|
| 3|
| 3|
| 2|
| 1|
+------+
I am using Apache Spark 2.0 Dataframe/Dataset API
I want to add a new column to my dataframe from List of values. My list has same number of values like given dataframe.
val list = List(4,5,10,7,2)
val df = List("a","b","c","d","e").toDF("row1")
I would like to do something like:
val appendedDF = df.withColumn("row2",somefunc(list))
df.show()
// +----+------+
// |row1 |row2 |
// +----+------+
// |a |4 |
// |b |5 |
// |c |10 |
// |d |7 |
// |e |2 |
// +----+------+
For any ideas I would be greatful, my dataframe in reality contains more columns.
You could do it like this:
import org.apache.spark.sql.Row
import org.apache.spark.sql.types._
// create rdd from the list
val rdd = sc.parallelize(List(4,5,10,7,2))
// rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[31] at parallelize at <console>:28
// zip the data frame with rdd
val rdd_new = df.rdd.zip(rdd).map(r => Row.fromSeq(r._1.toSeq ++ Seq(r._2)))
// rdd_new: org.apache.spark.rdd.RDD[org.apache.spark.sql.Row] = MapPartitionsRDD[33] at map at <console>:32
// create a new data frame from the rdd_new with modified schema
spark.createDataFrame(rdd_new, df.schema.add("new_col", IntegerType)).show
+----+-------+
|row1|new_col|
+----+-------+
| a| 4|
| b| 5|
| c| 10|
| d| 7|
| e| 2|
+----+-------+
Adding for completeness: the fact that the input list (which exists in driver memory) has the same size as the DataFrame suggests that this is a small DataFrame to begin with - so you might consider collect()-ing it, zipping with list, and converting back into a DataFrame if needed:
df.collect()
.map(_.getAs[String]("row1"))
.zip(list).toList
.toDF("row1", "row2")
That won't be faster, but if the data is really small it might be negligible and the code is (arguably) clearer.
I am new to UDF in spark. I have also read the answer here
Problem statement: I'm trying to find pattern matching from a dataframe col.
Ex: Dataframe
val df = Seq((1, Some("z")), (2, Some("abs,abc,dfg")),
(3,Some("a,b,c,d,e,f,abs,abc,dfg"))).toDF("id", "text")
df.show()
+---+--------------------+
| id| text|
+---+--------------------+
| 1| z|
| 2| abs,abc,dfg|
| 3|a,b,c,d,e,f,abs,a...|
+---+--------------------+
df.filter($"text".contains("abs,abc,dfg")).count()
//returns 2 as abs exits in 2nd row and 3rd row
Now I want to do this pattern matching for every row in column $text and add new column called count.
Result:
+---+--------------------+-----+
| id| text|count|
+---+--------------------+-----+
| 1| z| 1|
| 2| abs,abc,dfg| 2|
| 3|a,b,c,d,e,f,abs,a...| 1|
+---+--------------------+-----+
I tried to define a udf passing $text column as Array[Seq[String]. But I am not able to get what I intended.
What I tried so far:
val txt = df.select("text").collect.map(_.toSeq.map(_.toString)) //convert column to Array[Seq[String]
val valsum = udf((txt:Array[Seq[String],pattern:String)=> {txt.count(_ == pattern) } )
df.withColumn("newCol", valsum( lit(txt) ,df(text)) )).show()
Any help would be appreciated
You will have to know all the elements of text column which can be done using collect_list by grouping all the rows of your dataframe as one. Then just check if element in text column in the collected array and count them as in the following code.
import sqlContext.implicits._
import org.apache.spark.sql.functions._
import org.apache.spark.sql.expressions._
val df = Seq((1, Some("z")), (2, Some("abs,abc,dfg")),(3,Some("a,b,c,d,e,f,abs,abc,dfg"))).toDF("id", "text")
val valsum = udf((txt: String, array : mutable.WrappedArray[String])=> array.filter(element => element.contains(txt)).size)
df.withColumn("grouping", lit("g"))
.withColumn("array", collect_list("text").over(Window.partitionBy("grouping")))
.withColumn("count", valsum($"text", $"array"))
.drop("grouping", "array")
.show(false)
You should have following output
+---+-----------------------+-----+
|id |text |count|
+---+-----------------------+-----+
|1 |z |1 |
|2 |abs,abc,dfg |2 |
|3 |a,b,c,d,e,f,abs,abc,dfg|1 |
+---+-----------------------+-----+
I hope this is helpful.
I am using Apache Spark 2.0 Dataframe/Dataset API
I want to add a new column to my dataframe from List of values. My list has same number of values like given dataframe.
val list = List(4,5,10,7,2)
val df = List("a","b","c","d","e").toDF("row1")
I would like to do something like:
val appendedDF = df.withColumn("row2",somefunc(list))
df.show()
// +----+------+
// |row1 |row2 |
// +----+------+
// |a |4 |
// |b |5 |
// |c |10 |
// |d |7 |
// |e |2 |
// +----+------+
For any ideas I would be greatful, my dataframe in reality contains more columns.
You could do it like this:
import org.apache.spark.sql.Row
import org.apache.spark.sql.types._
// create rdd from the list
val rdd = sc.parallelize(List(4,5,10,7,2))
// rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[31] at parallelize at <console>:28
// zip the data frame with rdd
val rdd_new = df.rdd.zip(rdd).map(r => Row.fromSeq(r._1.toSeq ++ Seq(r._2)))
// rdd_new: org.apache.spark.rdd.RDD[org.apache.spark.sql.Row] = MapPartitionsRDD[33] at map at <console>:32
// create a new data frame from the rdd_new with modified schema
spark.createDataFrame(rdd_new, df.schema.add("new_col", IntegerType)).show
+----+-------+
|row1|new_col|
+----+-------+
| a| 4|
| b| 5|
| c| 10|
| d| 7|
| e| 2|
+----+-------+
Adding for completeness: the fact that the input list (which exists in driver memory) has the same size as the DataFrame suggests that this is a small DataFrame to begin with - so you might consider collect()-ing it, zipping with list, and converting back into a DataFrame if needed:
df.collect()
.map(_.getAs[String]("row1"))
.zip(list).toList
.toDF("row1", "row2")
That won't be faster, but if the data is really small it might be negligible and the code is (arguably) clearer.