Applying 3D rotation matrix to the x,y,z values obtained from surface function object. The error I get is due to the matrix not being nonconforment but how can I adjust the matrix correctly?
I know hgtransform / makehgtform can do rotations but I need to use rotation matrices since I plan on testing it using matrices created from quaternions.
I've created a little plane out of cylinders and the surface functions.
See code below:
clear all,clf
ax=axes('XLim',[-2 2],'YLim', [-2 10],'ZLim',[-1.5 1.5]);
grid on;
%axis equal;
xlabel('x');
ylabel('y');
zlabel('z');
ax
% rotate around
rot_mat = [.707 -.707 0;.707 .707 0; 0 0 1] %rotation matrix
[xc yc zc] = cylinder([0.1 0.0]); %cone
[x y z]= cylinder([0.2 0.2]);
h(1) = surface(xc,zc,-yc,'FaceColor', 'red'); %noise cone
h(2) = surface(z,y,0.5*x,'FaceColor', 'blue'); %right wing
h(3) = surface(-z,y,0.5*x,'FaceColor', 'yellow');%left wing
h(4) = surface(x,-1.5*z,0.5*y,'FaceColor', 'green'); %main body
h(5) = surface(xc,(1.5*yc)-1.3,z*.5,'FaceColor', 'red'); %tail
view(3);
x_temp = get(h(1),'xdata'); % get x values
y_temp = get(h(1),'ydata');
z_temp =get(h(1),'zdata');
xc_new=x_temp.*rot_mat;
%zc_new=
%yc_new=
I can get the x,y, and z value by using the commands
x_temp = get(h(1),'xdata');
y_temp = get(h(1),'ydata');
z_temp = get(h(1),'zdata');
The error I get is due to the matrix being nonconforment but how can I adjust the matrix correctly?
error: test_object_matrix_rot: product: nonconformant arguments (op1 is 2x21, op2 is 3x3).
The error is with the line xc_new=x_temp.*rot_mat;
PS: I'm using Octave 5.0.91 which is like Matlab
YOu are messing up a lot of things......in fact I would say, you have made your work complex. YOu should straight away work on matrices to rotate to new positons instead of arrays and picking them from the figure.
This line:
x_temp = get(h(1),'xdata'); % get x values
giving you a 2*21 array and your rot_mat is 3X3.....you cannot multiply them. YOu need to pick (x,y,z) and multiply this point with rotation matrix to get the point shifted. Check the below pseudo code.....yo can develop your logic with the below example code.
t = 0:0.1:1;
[X,Y,Z] = cylinder((t));
%% Rotation
th = pi/2 ;
Rx = [1 0 0 ; 0 cos(th) -sin(th) ; 0 sin(th) cos(th)] ;
P0 = [X(:) Y(:) Z(:)] ;
P1 = P0*Rx ;
X1 = reshape(P1(:,1),size(X)) ;
Y1 = reshape(P1(:,2),size(X)) ;
Z1 = reshape(P1(:,3),size(X)) ;
figure
hold on
surf(X,Y,Z)
surf(X1,Y1,Z1)
view(3)
[Hereafter are 4 snippets, one should only be interested in reading the two first ones. However by copy-pasting all of these, one should be able to launch what I see, although screenshots are provided at the end.]
Hi, by launching this main.m :
%To see if plotting a tick after setting camlight headlight will leads to
%its background becoming gray or not
%clear all
figure
arrow = arrow3D([0 0 0], [1 1 1], 'r', 0.8, 0.2, 1.5);
set(arrow, 'EdgeColor', 'interp', 'FaceColor', 'interp');
%camlight headlight %might be interesting to uncomment this line
pause(5)
surfaceHandle = rotateAxisTicks('lol','r',10,-0.3,0.5,0.5,1,1,1,0);
pause(5)
camlight headlight
%material(surfaceHandle,'default') %doesn't work
%surfaceHandle1.FaceLighting = 'none' %doesn't work
, which uses that function rotateAxisTicks.m
function surfaceHandle = rotateAxisTicks(str,color,fontsize,zmax,graduSpace,boxHeight,perc,labelNumber,axnumber,thetaInput)
%https://stackoverflow.com/questions/9843048/matlab-how-to-plot-a-text-in-3d
%zmax : give it a negative value to not overlap the axis
%graduSpace : space between each graduation, within the projected on [0,1] axis if axis = x||y, OR local (not yet projected on x,y) axis !!
%boxHeight : width of the boxes depend on how much the axis graduations are refined, so height shouldn't depend on graduSpace
%perc : if perc = 1 (100%), then the labels are all sticked together with no space inbetween
%labelNumber : the first tick to be displayed is actually associated to the second graduation (0 can't get several labels)
%axnumber : out of nbParams, 1 for x, 2 for y, then, from closest to x, to closest to y : 3 to nbParams.
%thetaInput : (angle around z, from x to the axis) has to be in degree
%% Seems like there is no way to get rid of the black contouring...
hFigure = figure(1000);
set(hFigure,'Color', 'w', ... % Create a figure window
'MenuBar', 'none', ...
'ToolBar', 'none');
hText = uicontrol('Parent', hFigure, ... % Create a text object
'Style', 'text', ...
'String', str, ...
'BackgroundColor', 'w', ...
'ForegroundColor', color, ...
'FontSize', fontsize, ...
'FontWeight', 'normal');
set([hText hFigure], 'Pos', get(hText, 'Extent')); %# Adjust the sizes of the
%# text and figure
imageData = getframe(hFigure); %# Save the figure as an image frame
delete(hFigure);
textImage = imageData.cdata; %# Get the RGB image of the text
%% MAKE THE X,Y,Z (text) REVERSE DEPENDING ON AZIMUT VALUE (launch a fig and see on the bottom in real time the azimut value)
% X or Y or Z(1,1) = _______
% * |
% | |
% |_______|
% X or Y or Z(1,2) = _______
% | *
% | |
% |_______|
% X or Y or Z(2,1) = _______
% | |
% | |
% x_______|
% X or Y or Z(2,2) = _______
% | |
% | |
% |_______x
if axnumber == 2 %axis = y
X = [0 0; 0 0];
Y = [0 perc*graduSpace; 0 perc*graduSpace] + labelNumber*graduSpace - perc*graduSpace/2;
%(graduSpace/2)/2 to center under the graduation, (1-perc)/2) to
%additionally shift a bit so that the perc% of graduSpace stay centered
%under the graduation
else %I assume axis = x, that I might later rotate if it's not actually x
X = [0 perc*graduSpace; 0 perc*graduSpace] + labelNumber*graduSpace - perc*graduSpace/2; %+labelNumber*((graduSpace/2)+((1-perc)/2)*graduSpace)
Y = [0 0; 0 0];
end
Z = [zmax zmax; zmax-boxHeight zmax-boxHeight];
surfaceHandle = surf(X, Y, Z, 'FaceColor', 'texturemap', 'CData', textImage);
if axnumber > 2
rotate(surfaceHandle, [0 0 1], thetaInput,[0 0 0]);
end
end
as well as that function arrow3D.m :
function arrowHandle = arrow3D(pos, deltaValues, colorCode, stemRatio, cylRad, radRatioCone)
% arrowHandle = arrow3D(pos, deltaValues, colorCode, stemRatio) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Used to plot a single 3D arrow with a cylindrical stem and cone arrowhead
% pos = [X,Y,Z] - spatial location of the starting point of the arrow (end of stem)
% deltaValues = [QX,QY,QZ] - delta parameters denoting the magnitude of the arrow along the x,y,z-axes (relative to 'pos')
% colorCode - Color parameters as per the 'surf' command. For example, 'r', 'red', [1 0 0] are all examples of a red-colored arrow
% stemRatio - The ratio of the length of the stem in proportion to the arrowhead. For example, a call of:
% arrow3D([0,0,0], [100,0,0] , 'r', 0.82) will produce a red arrow of magnitude 100, with the arrowstem spanning a distance
% of 82 (note 0.82 ratio of length 100) while the arrowhead (cone) spans 18.
%
% Example:
% arrow3D([0,0,0], [4,3,7]); %---- arrow with default parameters
% axis equal;
%
% Author: Shawn Arseneau
% Created: September 14, 2006
% Updated: September 18, 2006
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if nargin<2 || nargin>6
error('Incorrect number of inputs to arrow3D');
end
if numel(pos)~=3 || numel(deltaValues)~=3
error('pos and/or deltaValues is incorrect dimensions (should be three)');
end
if nargin<3
colorCode = 'interp';
end
if nargin<4
stemRatio = 0.75;
end
X = pos(1); %---- with this notation, there is no need to transpose if the user has chosen a row vs col vector
Y = pos(2);
Z = pos(3);
[sphi, stheta, srho] = cart2sph(deltaValues(1), deltaValues(2), deltaValues(3));
%******************************************* CYLINDER == STEM *********************************************
%cylinderRadius = 0.05*srho;
cylinderRadius = cylRad;
cylinderLength = srho*stemRatio;
[CX,CY,CZ] = cylinder(cylinderRadius);
CZ = CZ.*cylinderLength; %---- lengthen
%----- ROTATE CYLINDER
[row, col] = size(CX); %---- initial rotation to coincide with X-axis
newEll = rotatePoints([0 0 -1], [CX(:), CY(:), CZ(:)]); %CX(:) actually reshape the 2xN matrices in a 2N vert vector, by vertically concatenating each column
CX = reshape(newEll(:,1), row, col);
CY = reshape(newEll(:,2), row, col);
CZ = reshape(newEll(:,3), row, col);
[row, col] = size(CX);
newEll = rotatePoints(deltaValues, [CX(:), CY(:), CZ(:)]);
stemX = reshape(newEll(:,1), row, col);
stemY = reshape(newEll(:,2), row, col);
stemZ = reshape(newEll(:,3), row, col);
%----- TRANSLATE CYLINDER
stemX = stemX + X;
stemY = stemY + Y;
stemZ = stemZ + Z;
%******************************************* CONE == ARROWHEAD *********************************************
coneLength = srho*(1-stemRatio);
coneRadius = cylinderRadius*radRatioCone;
incr = 100; %---- Steps of cone increments
coneincr = coneRadius/incr;
[coneX, coneY, coneZ] = cylinder(cylinderRadius*2:-coneincr:0); %---------- CONE
coneZ = coneZ.*coneLength;
%----- ROTATE CONE
[row, col] = size(coneX);
newEll = rotatePoints([0 0 -1], [coneX(:), coneY(:), coneZ(:)]);
coneX = reshape(newEll(:,1), row, col);
coneY = reshape(newEll(:,2), row, col);
coneZ = reshape(newEll(:,3), row, col);
newEll = rotatePoints(deltaValues, [coneX(:), coneY(:), coneZ(:)]);
headX = reshape(newEll(:,1), row, col);
headY = reshape(newEll(:,2), row, col);
headZ = reshape(newEll(:,3), row, col);
%---- TRANSLATE CONE
V = [0, 0, srho*stemRatio]; %---- centerline for cylinder: the multiplier is to set the cone 'on the rim' of the cylinder
Vp = rotatePoints([0 0 -1], V);
Vp = rotatePoints(deltaValues, Vp);
headX = headX + Vp(1) + X;
headY = headY + Vp(2) + Y;
headZ = headZ + Vp(3) + Z;
%************************************************************************************************************
hStem = surf(stemX, stemY, stemZ, 'FaceColor', colorCode, 'EdgeColor', 'none');
hold on
hBottStem = fill3(stemX(1,:),stemY(1,:),stemZ(1,:), colorCode, 'EdgeColor', 'none');
hold on
hHead = surf(headX, headY, headZ, 'FaceColor', colorCode, 'EdgeColor', 'none');
hold on
hBottCone = fill3(headX(1,:),headY(1,:),headZ(1,:), colorCode, 'EdgeColor', 'none');
if nargout==1
arrowHandle = [hStem, hBottStem, hHead, hBottCone];
end
which itself uses that function rotatePoints.m :
function rotatedData = rotatePoints(alignmentVector, originalData)
% rotatedData = rotatePoints(alignmentVector, originalData) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Rotate the 'originalData' in the form of Nx2 or Nx3 about the origin by aligning the x-axis with the alignment vector
%
% Rdata = rotatePoints([1,2,-1], [Xpts(:), Ypts(:), Zpts(:)]) - rotate the (X,Y,Z)pts in 3D with respect to the vector [1,2,-1]
%
% Rotating using spherical components can be done by first converting using [dX,dY,dZ] = cart2sph(theta, phi, rho); alignmentVector = [dX,dY,dZ];
%
% Example:
% %% Rotate the point [3,4,-7] with respect to the following:
% %%%% Original associated vector is always [1,0,0]
% %%%% Calculate the appropriate rotation requested with respect to the x-axis. For example, if only a rotation about the z-axis is
% %%%% sought, alignmentVector = [2,1,0] %% Note that the z-component is zero
% rotData = rotatePoints(alignmentVector, [3,4,-7]);
%
% Author: Shawn Arseneau
% Created: Feb.2, 2006
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
alignmentDim = numel(alignmentVector); %number of elements in a matrix
DOF = size(originalData,2); %---- DOF = Degrees of Freedom (i.e. 2 for two dimensional and 3 for three dimensional data)
if alignmentDim~=DOF
error('Alignment vector does not agree with originalData dimensions');
end
if DOF<2 || DOF>3
error('rotatePoints only does rotation in two or three dimensions');
end
if DOF==2 % 2D rotation...
[rad_theta, rho] = cart2pol(alignmentVector(1), alignmentVector(2));
deg_theta = -1 * rad_theta * (180/pi);
ctheta = cosd(deg_theta); stheta = sind(deg_theta);
Rmatrix = [ctheta, -1.*stheta;...
stheta, ctheta];
rotatedData = originalData*Rmatrix;
%assumption: rotate all the datas from the original base to the
%base where the original x becomes alignmentVector
else % 3D rotation...
[rad_theta, rad_phi, rho] = cart2sph(alignmentVector(1), alignmentVector(2), alignmentVector(3));
rad_theta = rad_theta * -1;
deg_theta = rad_theta * (180/pi);
deg_phi = rad_phi * (180/pi);
ctheta = cosd(deg_theta); stheta = sind(deg_theta); %MM : is it more accurate??
Rz = [ctheta, -1.*stheta, 0;...
stheta, ctheta, 0;...
0, 0, 1]; %% First rotate as per theta around the Z axis
rotatedData = originalData*Rz;
[rotX, rotY, rotZ] = sph2cart(-1* (rad_theta+(pi/2)), 0, 1); %% Second rotation corresponding to phi
%assuming alignmentVector is the x for the new base, then the
%hereabove argument corresponds to the y (z inversed)
%the hereabove output = newX(in base 0) vectorial product -z(in base0)
rotationAxis = [rotX, rotY, rotZ];
u = rotationAxis(:)/norm(rotationAxis); %% Code extract from rotate.m from MATLAB
cosPhi = cosd(deg_phi);
sinPhi = sind(deg_phi);
invCosPhi = 1 - cosPhi;
x = u(1);
y = u(2);
z = u(3);
Rmatrix = [cosPhi+x^2*invCosPhi x*y*invCosPhi-z*sinPhi x*z*invCosPhi+y*sinPhi; ...
x*y*invCosPhi+z*sinPhi cosPhi+y^2*invCosPhi y*z*invCosPhi-x*sinPhi; ...
x*z*invCosPhi-y*sinPhi y*z*invCosPhi+x*sinPhi cosPhi+z^2*invCosPhi]';
rotatedData = rotatedData*Rmatrix;
end
I end up getting:
while I would like to conserve both intermediate plots containing the interp arrow:
and the text on flashy white background:
So there are actually two questions:
1) Why calling my text tick disables the interp effect (varying color from blue to yellow) ?
2) How can I keep the camlight without enlightening my tick box? (i.e while keeping its background white)
Basically one should only need to look at the two first snippets, the later 2 ones are useless for my issue.
By thanking you a lot!
Place it in another axes
As I said in comment, you have 2 graphic objects in the same axes which have to interpret their CData in a completely different manner.
The first options I looked for was to modify one of the arrow3d or rotateAxisTicks so their graphic objects would be "compatible" (in the way the color data are interpolated on an axes), but it would be quite intensive and the aspect of the 3d text would have to be constantly monitored/adjusted for any other change in the figure.
So the easiest option is a classic MATLAB hack ... place your graphic objects in different containers (different axes), then superimpose them on a figure, and match some properties (limits, view, etc ...) so they appear to be only one.
Here it goes:
%% Draw your main arrow in the main figure
mainfig = figure ;
ax1 = axes ;
arrow = arrow3D([0 0 0], [1 1 1], 'r', 0.8, 0.2, 1.5);
set(arrow, 'EdgeColor', 'interp', 'FaceColor', 'interp');
camlight headlight
%% Draw your text in a temporary figure
tempfig = figure ;
ax2 = axes ;
surfaceHandle = rotateAxisTicks('lol','r',10,-0.3,0.5,0.5,1,1,1,0);
camlight headlight
%material(surfaceHandle,'default') %doesn't work
%surfaceHandle1.FaceLighting = 'none' %doesn't work
%% Prepare and set matching limits
xl = [ax1.XLim ; ax2.XLim] ;
xl = [min(xl(:,1)) , max(xl(:,2))] ;
yl = [ax1.YLim ; ax2.YLim] ;
yl = [min(yl(:,1)) , max(yl(:,2))] ;
zl = [ax1.ZLim ; ax2.ZLim] ;
zl = [min(zl(:,1)) , max(zl(:,2))] ;
hax = [ax1;ax2] ;
set(hax,'XLim',xl,'YLim',yl,'ZLim',zl)
% Adjust the view to be sure
ax2.View = ax1.View ;
%% Remove secondary axes background, then move it to main figure
ax2.Visible = 'off' ;
ax2.Parent = mainfig ;
delete(tempfig)
%% link the view between axes
hl = linkprop( hax , 'View' ) ;
% or link even more properties at once
% hl = linkprop( hax , 'View' , 'XLim','YLim','ZLim') ;
Which gives you:
note: Your 3d arrow is also made up of 2 different graphic objects (2x surf and 2x patch). The 2 patches are not rendered when you set the interp mode. You should modify the arrow3d function to either (a) changes the patch objects to surf so everything is the same type and compatible, or (b) remove them completely from the function (if they are not rendered they are only annoying ... triggering warnings everywhere).
edit
And here is the modified code for arrow3d.m. I changed it so the output is now only one surface object, easier to assign properties and no danger of mismatch between patch and surf. I also simplified it, removed a few bits that were not necessary, and reduced the total number of points necessary for the surface.
With this you get the bottom of the stem and the under-cone:
function arrowHandle = arrow3D(pos, deltaValues, colorCode, stemRatio, cylRad )
% arrowHandle = arrow3D(pos, deltaValues, colorCode, stemRatio) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Used to plot a single 3D arrow with a cylindrical stem and cone arrowhead
% pos = [X,Y,Z] - spatial location of the starting point of the arrow (end of stem)
% deltaValues = [QX,QY,QZ] - delta parameters denoting the magnitude of the arrow along the x,y,z-axes (relative to 'pos')
% colorCode - Color parameters as per the 'surf' command. For example, 'r', 'red', [1 0 0] are all examples of a red-colored arrow
% stemRatio - The ratio of the length of the stem in proportion to the arrowhead. For example, a call of:
% arrow3D([0,0,0], [100,0,0] , 'r', 0.82) will produce a red arrow of magnitude 100, with the arrowstem spanning a distance
% of 82 (note 0.82 ratio of length 100) while the arrowhead (cone) spans 18.
%
% Example:
% arrow3D([0,0,0], [4,3,7]); %---- arrow with default parameters
% axis equal;
%
% Author: Shawn Arseneau
% Created: September 14, 2006
% Updated: September 18, 2006
%
% Updated: December 20, 2018
% Tlab - refactored to have only one surface object as ouput
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if nargin<2 || nargin>6
error('Incorrect number of inputs to arrow3D');
end
if numel(pos)~=3 || numel(deltaValues)~=3
error('pos and/or deltaValues is incorrect dimensions (should be three)');
end
if nargin<3
colorCode = 'interp';
end
if nargin<4
stemRatio = 0.75;
end
Ncol = 21 ; % default number of column for the "cylinder.m" function
X = pos(1); %---- with this notation, there is no need to transpose if the user has chosen a row vs col vector
Y = pos(2);
Z = pos(3);
[~, ~, srho] = cart2sph(deltaValues(1), deltaValues(2), deltaValues(3));
%******************************************* CYLINDER == STEM *********************************************
cylinderRadius = cylRad;
cylinderLength = srho*stemRatio;
[CX,CY,CZ] = cylinder(cylinderRadius,Ncol-1);
CZ = CZ.*cylinderLength; %---- lengthen
%******************************************* CONE == ARROWHEAD *********************************************
coneLength = srho*(1-stemRatio);
[coneX, coneY, coneZ] = cylinder([cylinderRadius*2 0],Ncol-1); %---------- CONE
coneZ = coneZ.*coneLength;
% Translate cone on top of the stem cylinder
coneZ = coneZ + cylinderLength ;
% now close the bottom and add the cone to the stem cylinder surface
bottom = zeros(1,Ncol) ;
CX = [ bottom ; CX ; coneX ] ;
CY = [ bottom ; CY ; coneY ] ;
CZ = [ bottom ; CZ ; coneZ ] ;
Nrow = size(CX,1);
%----- ROTATE
%---- initial rotation to coincide with X-axis
newEll = rotatePoints([0 0 -1], [CX(:), CY(:), CZ(:)]); %CX(:) actually reshape the 2xN matrices in a 2N vert vector, by vertically concatenating each column
CX = reshape(newEll(:,1), Nrow, Ncol);
CY = reshape(newEll(:,2), Nrow, Ncol);
CZ = reshape(newEll(:,3), Nrow, Ncol);
newEll = rotatePoints(deltaValues, [CX(:), CY(:), CZ(:)]);
stemX = reshape(newEll(:,1), Nrow, Ncol);
stemY = reshape(newEll(:,2), Nrow, Ncol);
stemZ = reshape(newEll(:,3), Nrow, Ncol);
%----- TRANSLATE
stemX = stemX + X;
stemY = stemY + Y;
stemZ = stemZ + Z;
%----- DISPLAY
hStem = surf(stemX, stemY, stemZ, 'FaceColor', colorCode, 'EdgeColor', 'none');
%----- DISPLAY
if nargout==1
arrowHandle = hStem ;
end
I have a circular lattice and on the lattice sites I plot normalized arrows that remain in the same magnitude and change direction according to a simulation, the details of which don't matter.
My plots look like this
Is it possible to replace the arrow in the quiver plot by an jpg/bmp/gif/png image? or by any other command?
Ideally, it would look something like this (although not necessarily arrows)
Explanation
One way that you can do this, would be to use a surface object with a texture-map as the FaceColor.
In MATLAB, you can create a simple rectangular surface. You can set the FaceColor to be texturemap which will cause the value assigned to CData to be mapped across the surface.
Then to get transparency, you can also set the FaceAlpha value to be texturemap and set the AlphaData and those transparency values will be mapped across the extent of the surface as well.
For this to be applied to your case, you want to set the CData to the image that you want to use to replace your arrows. And you will want the AlphaData to be the same size as your image data with values of 1 where you want it to be opaque and 0 where you want it to be transparent. This will allow it to not look like the image that you have posted where you can clearly see the bounding box. Then you will need to draw one of these surfaces where each of the arrows would go and scale/position it appropriately.
Implementation
Update: A more polished version of this code (ImageQuiver) is now available on Github as well as the MATLAB File Exchange.
As a demonstration of what I'm talking about, I have created the following function which essentially does just this. It accepts the same inputs as quiver (with the image data being supplied first and an optional AlphaData parameter at the end) and creates a surface at all of the requested coordinates pointing in the requested direction, and scaled by the specified amount.
function h = quiverpic(im, X, Y, dX, dY, scale, alpha)
% im - RGB or indexed image
% X - X positions
% Y - Y positions
% dX - X direction vector
% dY - Y direction vector
% scale - Any scaling (Default = 1)
% alpha - Transparency (same size as im), if not specified = ~isnan(im)
h = hggroup();
if ~exist('scale', 'var')
% By default there is no scaling
scale = 1;
end
if ~exist('alpha', 'var')
% By default, any NaN will be transparent
alpha = ~isnan(im);
end
% Determine aspect ratio of the source image
width_to_height = size(im, 2) / size(im, 1);
for k = 1:numel(X)
% Determine angle from displacement vectors
theta = atan2(dY(k), dX(k));
% Subtract pi/2 to +y is considered "up"
theta = theta + pi/2;
% Setup surface plot boundary
[xx,yy] = meshgrid([-0.5, 0.5] * width_to_height, [0 1]);
% Scale depending on magnitude of dX and dY
this_scale = scale * sqrt(dX(k).^2 + dY(k).^2);
% Scale X and Y components prior to rotating
xx = xx .* this_scale;
yy = yy .* this_scale;
% Rotate to align with the desired direction
xdata = xx .* cos(theta) - yy .* sin(theta);
ydata = xx .* sin(theta) + yy .* cos(theta);
% Determine what is considered the "anchor" of the graphic.
% For now this is assumed to be the "bottom-middle"
xoffset = X(k) - mean(xdata(2,:));
yoffset = Y(k) - mean(ydata(2,:));
% Actually plot the surface.
surf(xdata + xoffset, ...
ydata + yoffset, zeros(2), ...
'Parent', h, ...
'FaceColor', 'texture', ...
'EdgeColor', 'none', ...
'CData', im, ...
'FaceAlpha', 'texture', ...
'AlphaData', double(alpha));
end
end
Example
I wrote a little test script to show how this can be used and to show the results.
t = linspace(0, 2*pi, 13);
dX = cos(t(1:end-1));
dY = sin(t(1:end-1));
X = (3 * dX) + 5;
Y = (3 * dY) + 5;
scale = 1;
% Load the MATLAB logo as an example image
png = fullfile(matlabroot,'/toolbox/matlab/icons/matlabicon.gif');
[im, map] = imread(png);
im = ind2rgb(im, map);
% Determine alpha channel based on upper left hand corner pixel
flatim = reshape(im, [], 3);
alpha = ~ismember(flatim, squeeze(im(1,1,:)).', 'rows');
alpha = reshape(alpha, size(im(:,:,1)));
% Plot some things prior to creating the quiverpic object
fig = figure();
hax = axes('Parent', fig);
axis(hax, 'equal');
% Plot a full circle
t = linspace(0, 2*pi, 100);
plot((cos(t) * 3) + 5, (sin(t) * 3) + 5, '-')
hold(hax, 'on')
% Plot markers at all the quiver centers
plot(X, Y, 'o', 'MarkerFaceColor', 'w')
% Plot a random image behind everything to demonstrate transparency
him = imagesc(rand(9));
uistack(him, 'bottom')
axis(hax, 'equal')
colormap(fig, 'gray')
set(hax, 'clim', [-4 4]);
% Now plot the quiverpic
h = quiverpic(im, X, Y, dX, dY, 1, alpha);
axis(hax, 'tight')
Results
Absurdity
Same image with varying vectors and scaling
Any image of any aspect ratio will work just fine
I have little or no experience with volumetric data in MATLAB,
I need to complete next task:
I have 3 vectors ( rows ):
x_ = vector(1:smpl:max_row,1);
y_ = vector(1:smpl:max_row,2);
z_ = vector(1:smpl:max_row,3);
that are samples from large 3 columns array vector with height max_row.
x_ , y_ , z_ are points of 3D figure - surface points of the figure ( volume ). They represent 3D body that should be drawn in matlab.
I created linear grid:
%linear grid
a = -1.1:step:(-1.1+step*(length(x_)-1));
b = -1.1:step:(-1.1+step*(length(y_)-1));
c = -1.1:step:(-1.1+step*(length(z_)-1));
[x,y,z] = meshgrid(-1.1:step:(-1.1+step*(length(x_)-1)));
and also I create array v length(x_)*length(x_)*length(x_) that contains '1' in cells that are of 3D body representation function points and '0' another.
I tryied to make interpolation:
vi = interp3(x,y,z,v,x,y,z,'nearest');
but then vi = v that I've already created.
Now I need to plot the v array on 3D and form 3D body like in
http://www.mathworks.com/help/techdoc/ref/isonormals.html
for example.
I make that next way:
%plotting:
figure
p = patch(isosurface(x,y,z,v,1e-5,'verbose'),'FaceColor','green','EdgeColor','none');
grid on;
isonormals(v,p);
daspect([1 1 1])
view(3);
axis tight;
camproj perspective;
camlight
lighting gouraud
colormap(hsv)
but I get then only small rectangles in place of function '1' that are not connected like in picture that is attached.
I expect solid body enclosed by that points to be plotted.
Does anybody know what is the problem , how to draw 3D body from the x,y,z,v arrays ?
Thanks in advance.
image:
http://imgur.com/Ulegj
Try this, which will be a nice plot (it interpolates a bit though):
x = vector(1:smpl:max_row,1);
y = vector(1:smpl:max_row,2);
z = vector(1:smpl:max_row,3);
% Settings
displaySurface = 1;
displayPoints = 0;
xres = 800; % Resolution, the higher, the smoother
yres = 800;
cm = 'default'; % Colormap
% Axes Limits
xmin = min(x);
ymin = min(y);
xmax = max(x);
ymax = max(y);
xi = linspace(xmin, xmax, xres);
yi = linspace(ymin, ymax, yres);
% Figure
myfig = figure('Position', [200 200 800 600]);
rotate3d off
[XI, YI] = meshgrid(xi, yi);
ZI = griddata(x, y, z, XI, YI, 'cubic');
mesh(XI,YI,ZI);
colormap(cm)
if(displaySurface == 1)
hold on;
surf(XI, YI, ZI, 'EdgeColor', 'none');
end
hold on;
xlabel('x');
ylabel('y');
zlabel('z');
title('Title', 'FontWeight', 'bold');
xlim([xmin xmax])
ylim([ymin ymax])
grid off;
if(displayPoints == 1)
hold on
plot3(x, y, z,'marker','p','markerfacecolor','w','linestyle','none')
hidden off
end