Does it make sense to use Apache Kafka for this Scenario? - apache-kafka

There are several applications which have to be integrated together and they have to exchange Issues. So one of them will get the issue and then do something and later on change the Status of this Issue. And the other applications which could be involved to this Issue should get the new Information. This continues until the Issue reaches the final Status Closed. The Problem is the Issue have to be mapped, because these applications do not all support the same Data Format.
I'm not sure whether to send the whole Issue always or just the new Status as an Event.
How does Kafka Support Data Transformation?
What if my Issue has an attachment?(>5MB)
Thanks for your advice

Yes it does make sense.
Kafka can do transformations through both the Kafka Streams API, and KSQL which is a streaming SQL engine built on top of Kafka Streams.
Typically Kafka is used for smaller messages; one pattern to consider for larger content is to store it in an object store (e.g. S3, or similar depending on your chosen architecture) and reference a pointer to it in your Kafka message.

I'm not sure whether to send the whole Issue always or just the new Status as an Event.
You can do this either way. If you send the whole Issue and then publish all subsequent updates to the same issue as Kafka messages that contain a common kafka message key (perhaps a unique issue ID number) then you can configure your kafka topic as a compacted topic and the brokers will automatically delete any older copies of the data to save disk space.
If you chose to only send deltas (changes) then you need to be careful to have a retention period that’s long enough so that the initial complete record will never expire while the issue is still open and publishing updates. The default retention period is 7 days.
How does Kafka Support Data Transformation?
Yes. In Kafka Connect via Single Message Transforms (SMT), or in Kafka Streams using native Streams code (in Java).
What if my Issue has an attachment?(>5MB)
You can configure kafka for large messages but if they are much larger than 5 or 10 MB then it’s usually better to follow a claim check pattern and store them external to Kafka and just publish a reference link back to the externally stored data so the consumer can retrieve the attachment out of band from Kafka.

Related

Are Kafka and Kafka Streams right tools for our case?

I'm new to Kafka and will be grateful for any advice
We are updating a legacy application together with moving it from IBM MQ to something different.
Application currently does the following:
Reads batch XML messages (up to 5 MB)
Parses it to something meaningful
Processes data parallelizing this procedure somehow manually for parts of the batch. Involves some external legacy API calls resulting in DB changes
Sends several kinds of email notifications
Sends some reply to some other queue
input messages are profiled to disk
We are considering using Kafka with Kafka Streams as it is nice to
Scale processing easily
Have messages persistently stored out of the box
Built-in partitioning, replication, and fault-tolerance
Confluent Schema Registry to let us move to schema-on-write
Can be used for service-to-service communication for other applications as well
But I have some concerns.
We are thinking about splitting those huge messages logically and putting them to Kafka this way, as from how I understand it - Kafka is not a huge fan of big messages. Also it will let us parallelize processing on partition basis.
After that use Kafka Streams for actual processing and further on for aggregating some batch responses back using state store. Also to push some messages to some other topics (e.g. for sending emails)
But I wonder if it is a good idea to do actual processing in Kafka Streams at all, as it involves some external API calls?
Also I'm not sure what is the best way to handle the cases when this external API is down for any reason. It means temporary failure for current and all the subsequent messages. Is there any way to stop Kafka Stream processing for some time? I can see that there are Pause and Resume methods on the Consumer API, can they be utilized somehow in Streams?
Is it better to use a regular Kafka consumer here, possibly adding Streams as a next step to merge those batch messages together? Sounds like an overcomplication
Is Kafka a good tool for these purposes at all?
Overall I think you would be fine using Kafka and probably Kafka Streams as well. I would recommend using streams for any logic you need to do i.e. filtering or mapping that you have todo. Where you would want to write with a connector or a standard producer.
While it is ideal to have smaller messages I have seen streams users have messages in the GBs.
You can make remote calls, to send and email, from a Kafka Streams Processor but that is not recommend. It would probably be better to write the event to send an email to an output topic and use a normal consumer to read and send the messages. This would also take care of your concern about the API being down as you can always remember the last offset in case and restart from there. Or use the Pause and Resume methods.

Designing a real-time data pipeline for an e-commerce web site [closed]

Closed. This question needs to be more focused. It is not currently accepting answers.
Want to improve this question? Update the question so it focuses on one problem only by editing this post.
Closed 2 years ago.
Improve this question
I want to learn Apache Kafka. I read articles and documents but I could not figure out how Kafka works. There are lots of questions in my mind :( I want to create a Kafka cluster and develop some code for preparing data engineering interviews. But, I am stuck. Any help would be appreciated. I will try to explain my questions in an example scenario.
For instance, there is a popular e-commerce company. They have a huge amount of web traffic. The web site is running on AWS. The mobile applications are also using AWS services.
The marketing department wants to observe the efficiency of their advertisement actions like email, SMS etc. They also want to follow important real-time metrics (sold products, page views, active users in the last n minutes etc) in a dashboard.
First, the campaign automation system sends personalized campaign emails to target customers. When a user clicks the link in the advertisement email, the browser is opening the e-commerce web site.
On the background, the website developers should send a clickstream event to the Kafka cluster with the related parameters (like customer id, advertisement id, source_medium etc).
How can the backend developers send a message to the Kafka cluster when a user loads the web site? Should developers send a post request or get request? Are they other alternatives?
Then data engineers should direct this clickstream message to the storage layer. (for example AWS S3). Will this cause too many small files in AWS S3 buckets? May this slow down the execution of data flows?
Data engineers need to develop a data pipeline in order to do real-time analysis. Which technologies should data engineers use? (Kafka Connect, Kafka Streams, Producer and Consumer etc)
Kafka topics may have lots of messages. One message can be consumed by different consumers. A consumer reads the message from the Kafka topic. Then, another consumer can read it, even after a while. So data engineers need to manage offsets in order to consume all messages one and only one. How can they manage offsets properly?
All clickstream events should be consumed.
All clickstream events should be consumed for once. If a product view event is consumed more than once, the dashboard will not show the correct product view count.
Do developers need to manage offsets manually? Or is there any technology/way which manages offsets automatically?
Event order can be important. The marketing department wants to see the category view durations. For instance, a user views 10 books in the ebooks category. Ten events were created. User is on the same category page until his/her first action. So data engineers need to calculate the duration between the first event and the last event.
However, Kafka is a queue and there is not any order in it. Producers can send data to Kafka asynchronously. How can data engineers calculate the durations correctly?
What happens if a producer sends an event to Kafka after the total elapsed duration was calculated.
Note: View duration may fit better to content web sites. For example, Netflix marketing users want to analyze the content view durations and percentages. If a user opens a movie and watched just five minutes, the marketing department may consider that the user does not like the movie.
Thanks in advance
You have really asked several unrelated questions here. Firstly, Kafka has a lot of free documentation available for it, along with many high quality 'getting started' blocks and paid books and courses. I would definitely start there. You might still have questions, but at least you will have a better awareness of the platform and you can ask questions in a lot more focused ways, which will hopefully get a much better answer. Start with the official docs. Personally, I learned Kafka by reading the Effective Kafka book, but I'm sure there are many others.
Going through your list of questions.
How can the backend developers send a message to the Kafka cluster when a user loads the web site? Should developers send a post request or get request? Are they other alternatives?
The website would typically publish an event. This is done by opening a client connection to a set of Kafka brokers and publishing a record to some topic. You mention POST/GET requests: this is not how Kafka generally works — the clients establish persistent connections to a cluster of brokers. However, if you preferred programming model is REST, Confluent does provide a Kafka REST Proxy for this use case.
Then data engineers should direct this clickstream message to the storage layer. (for example AWS S3). Will this cause too many small files in AWS S3 buckets? May this slow down the execution of data flows?
It depends how you write to S3. You may develop a custom consumer application that stages writes in a different persistent layer and then writes to S3 in batches. Kafka Connect also has an Amazon S3 connector that moves data in chunks.
Data engineers need to develop a data pipeline in order to do real-time analysis. Which technologies should data engineers use? (Kafka Connect, Kafka Streams, Producer and Consumer etc)
There is no correct answer here. All of the technologies you have listed are valid and may be used to a similar effect. Both Connect and Streams are quite popular for this types of applications; however, you can just as easily write a custom consumer application for all your needs.
Kafka topics may have lots of messages. One message can be consumed by different consumers. A consumer reads the message from the Kafka topic. Then, another consumer can read it, even after a while. So data engineers need to manage offsets in order to consume all messages one and only one. How can they manage offsets properly?
In the simplest case, Kafka offset management is automatic and the default behaviour allows for at-least once delivery, whereby a record will be delivered again if the first processing attempt failed. This may lead to duplicate effects (counting a clickstream event twice, as you described) but this is addressed by making your consumer idempotent. This is a fairly complex topic; there is great answer on Quora that covers the issue of exactly-once delivery in detail.
Event order can be important. The marketing department wants to see the category view durations. For instance, a user views 10 books in the ebooks category. Ten events were created. User is on the same category page until his/her first action. So data engineers need to calculate the duration between the first event and the last event.
The concept of order is backed into Kafka. Kafka's topics are sharded into partitions, where each partition is a totally-ordered, unbounded stream of records. Records may be strictly ordered provided they are published to the same partition. This is achieved by assigning them the same key, which the Kafka client hashes behind the scenes to arrive at the partition index. Any two records that have the same key will occupy the same partition, and will therefore be ordered.
Welcome to stackoverflow! I will answer a few of your questions, however you should go through the Kafka documentation for such things, if you are facing any problem while implementing it, then you should post here.
How can developers send data to a Kafka cluster? You have talked about producers, but I guess you haven't read about them, the developers will have to use a producer to produce an event to a Kafka topic.You can read more about a Kafka producer in the documentation.
To direct the messages to a storage layer, Kafka consumers will be used.
Note : Kafka Connect can be used instead of Kafka producer and consumer in some scenarios, Kafka connect has source connectors and sink connectors instead of producer and consumer.
For real time data analysis, Kafka Streams or KSQL can be used. These cannot be explained in an answer, I recommend you go through the documentation.
A single Kafka topic can have multiple consumer groups, and every consumer group has a different offset, you can tweak the configuration to use or not to use these offsets for every consumer group.
You can change various configurations such as Ack = All, to guarantee at least once and at most once semantics. Again you should go through the documentation to understand this completely.
You can maintain message order in Kafka as well, for that to happen, your consumers will have to wait for the acknowledgement from Kafka after every message has been sent, obviously this will slow down the process but you will have to compromise one of the things.
I haven't understood your requirements related to the last point, but I guess you should go through Kafka Streams and KSQL documentation once, as you can manage your window size for analysis over there.
I have tried to answer most of your questions in brief but to understand it completely, obviously you will have to go through the documentation in detail.
Agree with the answers above. The questions you ask are reasonably straightforward and likely answered in the official documentation.
As per one of the replies, there are lots of excellent books and tutorials online. I recently wrote a summary of educational resources on Kafka which you might find useful.
Based on your scenario, this will be a straightforward stream processing application with an emitter and a few consumers.
The clickstream event would be published onto the Kafka cluster through a Kafka client library. It's not clear what language the website is written in, but there is likely a library available for that language. The web server connects to Kafka brokers and publishes a message every time the user performs some action of significance.
You mention that order matters. Kafka has inherent support for ordered messages. All you need to do is publish related messages with the same key, for example the username of the customer or their ID. Kafka then ensures that those messages will appear in the order that they were published.
You say that multiple consumers will be reading the same stream. This is easily achieved by giving each set of consumers a different group.id. Kafka keeps a separate set of committed offsets for each consumer group (Kafka's terminology for a related set of consumers), so that one group can process messages independently of another. For committing offsets, the easiest approach is to use the automatic offset commit mode that is enabled by default. This way records will not be committed until your consumer is finished with them, and if a consumer fails midway through processing a batch of records, those records will be redelivered.

Kafka connect or Kafka Client

I need to fetch messages from Kafka topics and notify other systems via HTTP based APIs. That is, get message from topic, map to the 3rd party APIs and invoke them. I intend to write a Kafka Sink Connector for this.
For this use case, is Kafka Connect the right choice or I should go with Kafka Client.
Kafka clients when you have full control on your code and you are expert developer, you want to connect an application to Kafka and can modify the code of the application.
push data into Kafka
pull data from Kafka.
https://cwiki.apache.org/confluence/display/KAFKA/Clients
Kafka Connect when you don’t have control on third party code new in Kafka and to you have to connect Kafka to datastores that you can’t modify code.
Kafka Connect’s scope is narrow: it focuses only on copying streaming data to and from Kafka and does not handle other tasks.
http://docs.confluent.io/2.0.0/connect/
I am adding few lines form other blogs to explain differences
Companies that want to adopt Kafka write a bunch of code to publish their data streams. What we’ve learned from experience is that doing this correctly is more involved than it seems. In particular, there are a set of problems that every connector has to solve:
• Schema management: The ability of the data pipeline to carry schema information where it is available. In the absence of this capability, you end up having to recreate it downstream. Furthermore, if there are multiple consumers for the same data, then each consumer has to recreate it. We will cover the various nuances of schema management for data pipelines in a future blog post.
• Fault tolerance: Run several instances of a process and be resilient to failures
• Parallelism: Horizontally scale to handle large scale datasets
• Latency: Ingest, transport and process data in real-time, thereby moving away from once-a-day data dumps.
• Delivery semantics: Provide strong guarantees when machines fail or processes crash
• Operations and monitoring: Monitor the health and progress of every data integration process in a consistent manner
These are really hard problems in their own right, it just isn’t feasible to solve them separately in each connector. Instead you want a single infrastructure platform connectors can build on that solves these problems in a consistent way.
Until recently, adopting Kafka for data integration required significant developer expertise; developing a Kafka connector required building on the client APIs.
https://www.confluent.io/blog/announcing-kafka-connect-building-large-scale-low-latency-data-pipelines/
Kafka Connect will work well for this purpose, but this would also be a pretty straightforward consumer application as well because consumers also have the benefits of fault tolerance/scalability and in this case you're probably just doing simple message-at-a-time processing within each consumer instance. You can also easily use enable.auto.commit for this application, so you will not encounter the tricky parts of using the consumer directly. The main thing using Kafka Connect would give you compared to using the consumer in this case would be that the connector could be made generic for different input formats, but that may not be important to you for a custom connector.
you should use kafka connect sink when you are using kafka connect source for producing messages to a specific topic.
for e.g. when you are using file-source then you should use file-sink to consume what source have been produced. or when you are using jdbc-source you should use jdbc-sink to consume what you have produced.
because the schema of the producer and sink consumer should be compatible then you should use compatible source and sink in both sides.
if in some cases the schemas are not compatible you can use SMT (Simple message transform) capability that is added since version 10.2 of kafka onward and you will be able to write message transformers to transfer message between incompatible producers and consumers.
Note: if you want to transfer messages faster I suggest that you use avro and schema registry to transfer message more efficiently.
If you can code with java you can use java kafka stream, Spring-Kafka project or stream processing to achieve what you desire.
In the book that is called Kafka In Actionis explained like following:
The purpose of Kafka Connect is to help move data in or out of Kafka without having to deal with writing our own producers and clients. Connect is a framework that is already part of Kafka that really can make it simple to use pieces that have been already been built to start your streaming journey.
As for your problem, Firstly, one of the simpliest questions that one should ask is if you can modify the application code of the systems from which you need data interaction.
Secondly, If you would write custom connector which have the in-depth knowledge the ability and this connector will be used by others, it worth it. Because it may help others that may not be the experts in those systems. Otherwise, this kafka connector is used only by yourself, I think you should write Kafka connector. So you can get more flexibility and can write more easily implementing.

Is Kafka suitable for running a public API?

I have an event stream that I want to publish. It's partitioned into topics, continually updates, will need to scale horizontally (and not having a SPOF is nice), and may require replaying old events in certain circumstances. All the features that seem to match Kafka's capabilities.
I want to publish this to the world through a public API that anyone can connect to and get events. Is Kafka a suitable technology for exposing as a public API?
I've read the Documentation page, but not gone any deeper yet. ACLs seem to be sensible.
My concerns
Consumers will be anywhere in the world. I can't see that being a problem seeing Kafka's architecture. The rate of messages probably won't be more than 10 per second.
Is integration with zookeeper an issue?
Are there any arguments against letting subscriber clients connect that I don't control?
Are there any arguments against letting subscriber clients connect that I don't control?
One of the issues that I would consider is possible group.id collisions.
Let's say that you have one single topic to be used by the world for consuming your messages.
Now if one of your clients has a multi-node system and wants to avoid reading the same message twice, they would set the same group.id to both nodes, forming a consumer group.
But, what if someone else in the world uses the same group.id? They would affect the first client, causing it to lose messages. There seems to be no security at that level.

How to model topics and partitions for Kafka when used to store all business events?

We're considering using Kafka as a way to store all our business events forever. The purpose is to be able to spin up new "microservices" that we haven't yet thought of that will be able to leverage on all previous events to build up their projections/state. Another use case might be an existing service where we'd like to "replay" all events that is of interest to this service to recreate its state.
Note that we're not planning to use Kafka as an "event store" in the sense that events will be projected/loaded into an aggregate on "every request".
Also (as far as I can tell) we don't know how consumers will consume the events. A new microservice might need all sorts of different events in order to create its internal projection/state.
Is Kafka suitable for this or is there a better alternative?
If so, what's a good way to model this (topics/partitions)?
We're currently using RabbitMQ for messaging (business events are sent to RabbitMQ). It would be great if we could migrate away from RabbitMQ in the future and move entirely to Kafka. I assume that this could change the way topics and partitions are modelled since now we have a better understanding of how consumers will consume the events. Would this be compatible with the other use case (infinite retention and replay)?
This is very good that you are switching to KAFKA and Yes it is possible to keep data in KAFKA BROKERs but i would suggest rather than keeping all the data in KAFKA-BROKERs for all time why can't you dump this data into HDFS or S3(AWS) it will be cheaper and you will have all the features of HDFS available with your data.
Storing all data in Brokers will increase overhead on Zookeeper as well.