AWS Glue: How to handle nested JSON with varying schemas - amazon-redshift

Objective:
We're hoping to use the AWS Glue Data Catalog to create a single table for JSON data residing in an S3 bucket, which we would then query and parse via Redshift Spectrum.
Background:
The JSON data is from DynamoDB Streams and is deeply nested. The first level of JSON has a consistent set of elements: Keys, NewImage, OldImage, SequenceNumber, ApproximateCreationDateTime, SizeBytes, and EventName. The only variation is that some records do not have a NewImage and some don't have an OldImage. Below this first level, though, the schema varies widely.
Ideally, we would like to use Glue to only parse this first level of JSON, and basically treat the lower levels as large STRING objects (which we would then parse as needed with Redshift Spectrum). Currently, we're loading the entire record into a single VARCHAR column in Redshift, but the records are nearing the maximum size for a data type in Redshift (maximum VARCHAR length is 65535). As a result, we'd like to perform this first level of parsing before the records hit Redshift.
What we've tried/referenced so far:
Pointing the AWS Glue Crawler to the S3 bucket results in hundreds of tables with a consistent top level schema (the attributes listed above), but varying schemas at deeper levels in the STRUCT elements. We have not found a way to create a Glue ETL Job that would read from all of these tables and load it into a single table.
Creating a table manually has not been fruitful. We tried setting each column to a STRING data type, but the job did not succeed in loading data (presumably since this would involve some conversion from STRUCTs to STRINGs). When setting columns to STRUCT, it requires a defined schema - but this is precisely what varies from one record to another, so we are not able to provide a generic STRUCT schema that works for all the records in question.
The AWS Glue Relationalize transform is intriguing, but not what we're looking for in this scenario (since we want to keep some of the JSON intact, rather than flattening it entirely). Redshift Spectrum supports scalar JSON data as of a couple weeks ago, but this does not work with the nested JSON we're dealing with. Neither of these appear to help with handling the hundreds of tables created by the Glue Crawler.
Question:
How would we use Glue (or some other method) to allow us to parse just the first level of these records - while ignoring the varying schemas below the elements at the top level - so that we can access it from Spectrum or load it physically into Redshift?
I'm new to Glue. I've spent quite a bit of time in the Glue documentation and looking through (the somewhat sparse) info on forums. I could be missing something obvious - or perhaps this is a limitation of Glue in its current form. Any recommendations are welcome.
Thanks!

I'm not sure you can do this with a table definition, but you can accomplish this with an ETL job by using a mapping function to cast the top level values as JSON strings. Documentation: [link]
import json
# Your mapping function
def flatten(rec):
for key in rec:
rec[key] = json.dumps(rec[key])
return rec
old_df = glueContext.create_dynamic_frame.from_options(
's3',
{"paths": ['s3://...']},
"json")
# Apply mapping function f to all DynamicRecords in DynamicFrame
new_df = Map.apply(frame=old_df, f=flatten)
From here you have the option of exporting to S3 (perhaps in Parquet or some other columnar format to optimize for querying) or directly into Redshift from my understanding, although I haven't tried it.

This is a limitation of Glue as of now. Have you taken a look at Glue Classifiers? It's the only piece I haven't used yet, but might suit your needs. You can define a JSON path for a field or something like that.
Other than that - Glue Jobs are the way to go. It's Spark in the background, so you can do pretty much everything. Set up a development endpoint and play around with it. I've run against various roadblocks for the last three weeks and decided to completely forgo any and all Glue functionality and only Spark, that way it's both portable and actually works.
One thing you might need to keep in mind when setting up the dev endpoint is that the IAM role must have a path of "/", so you will most probably need to create a separate role manually that has this path. The one automatically created has a path of "/service-role/".

you should add a glue classifier preferably $[*]
When you crawl the json file in s3, it will read the first line of the file.
You can create a glue job in order to load the data catalog table of this json file into the redshift.
My only problem with here is that Redshift Spectrum has problems reading json tables in the data catalog..
let me know if you have found a solution

The procedure I found useful to shallow nested json:
ApplyMapping for the first level as datasource0;
Explode struct or array objects to get rid of element level
df1 = datasource0.toDF().select(id,col1,col2,...,explode(coln).alias(coln), where explode requires from pyspark.sql.functions import explode;
Select the JSON objects that you would like to keep intact by intact_json = df1.select(id, itct1, itct2,..., itctm);
Transform df1 back to dynamicFrame and Relationalize the
dynamicFrame as well as drop the intact columns by dataframe.drop_fields(itct1, itct2,..., itctm);
Join relationalized table with the intact table based on 'id'
column.

As of 12/20/2018, I was able to manually define a table with first level json fields as columns with type STRING. Then in the glue script the dynamicframe has the column as a string. From there, you can do an Unbox operation of type json on the fields. This will json parse the fields and derive the real schema. Combining Unbox with Filter allows you to loop through and process heterogeneous json schemas from the same input if you can loop through a list of schemas.
However, one word of caution, this is incredibly slow. I think that glue is downloading the source files from s3 during each iteration of the loop. I've been trying to find a way to persist the initial source data but it looks like .toDF derives the schema of the string json fields even if you specify them as glue StringType. I'll add a comment here if I can figure out a solution with better performance.

Related

How can I parameterize a BigQuery table in Dataprep?

I'm used to use Dataprep to recipe json and csv files from Cloud Storage, but today I tried to ingest a table from BigQuery and could not parametrize.
Is it possible to do that?
Here are some screenshots to illustrate my question:
The prefix that I need
The standard does not work
From Cloud Storage works
In order to ingest a table from BigQuery, you can directly create a Dataset with SQL. I am not sure on what you would like to achieve with the 'Search' input, but it does not accept regular expressions. So, the '*' would not be needed, and just writing 'event_', the interface will filter the matching entries.

ELT pipeline for Mongo

I am trying to get my data into Amazon Redshift using Fivetran, but have some questions in general about the ELT/ETL process. My source database is Mongo but I want to perform deep analysis on the data using a 3rd party BI tool like Looker, but they integrate with SQL. I am new to the ELT/ETL process and was wondering would it look like this.
Extract data from Mongo (handled by Fivetran)
Load into Amazon Redshift (handled by Fivetran)
Perform Transformation - This is where my biggest knowledge gap is. I obviously have to convert objects and arrays into compatible SQL types. I can perform a transformation on all objects to extract those to columns and transform all arrays to a table. Is this the right idea? Should I design a MYSQL schema and write all the transformations according to that schema design?
as you state, Fivetran will load your data into Redshift putting individual fields in columns where it can and putting everything else into varchar columns as JSON. So at that point you basically have a Data Lake - all your data in an analytical platform but basically still in source format and available for you to do whatever you want with it.
Initially, if you don't know much about your data and just want to investigate it, you can probably leave it as it is. Redshift has SQL functions that allow you to query the elements of a JSON structure so there is no need to build additional tables and more ETL just to allow you to investigate your data - especially as these tables may get thrown away once you understand your data and decide what you want to do with it.
If you have proper reporting requirements then that is the point where you can start to design a schema that will support these requirements (I'm not sure why you suggested a MYSQL schema as MYSQL is a database vendor?). Traditionally an analytical schema would be designed as a Kimball Dimensional model (facts and dimensions) but the type of schema you decide to design will depend on:
The database platform you are using (in your case, Redshift) and the type of structures it works best with e.g. star schema or "flat" tables
The BI tool you are using and how it expects to have data presented to it
For example (and I'm not saying this is a real world example), if Redshift works ok with star schemas but better with flat tables and Looker has to have a star schema then it probably makes more sense to build star schemas in Redshift as this is a single modelling exercise - rather than model flat tables in Redshift and then have to model star schemas in Looker.
Hope this helps?
It depends on how you need the final stage of your data analysis presented, and what the purpose of your data analysis is. As stated by NickW, assuming you need to integrate your data into a BI tool the schema should be adapted according to the tool's data format requirements.
a mongodb ETL/ELT process might looks like this:
Select Connection: Select the set connection
Collection Name:Choose the collection by using the [database].[collection] format.
If you pulling data from your authentication database, only the [collection] name can be determined. Examples: ea sample.products east .
Extract Method:
All: pull the entire data in the table.
Incremental: pull data by incremental value.
Incremental Attributes: Set the name of the incremental attribute to run by. I.e: UpdateTime .
Incremental Type: Timestamp | Epoch. Choose the type of incremental attribute.
Choose Range:
In Timestamp, choose your date increment range to run by.
In Epoch, choose the value increment range to run by.
If no End Date/Value entered, the default is the last date/value in the table.
The increment will be managed automatically
Include End Value: Should the increment process take the end value or not
Interval Chunks: On what chunks the data will be pulled by. Split the data by minutes, hours, days, months or years.
Filter: Filter the data to pull. The filter format will be a MongoDB Extended JSON.
Limit: Limit the rows to pull.
Auto Mapping: You can choose the set of columns you want to bring, add a new column or leave it as it is.
Converting Entire Key Data As a STRING
In cases the data is not as expected by a target, like key names started with numbers, or flexible and inconsistent object data, You can convert attributes to a STRING format by setting their data types in the mapping section as STRING
Conversion exists for any value under that key.
Arrays and objects will be converted to JSON strings.
Use cases:
Here are few filtering examples:
{"account":{"$oid":"1234567890abcde"}, "datasource": "google", "is_deleted": {"$ne": true}}
date(MODIFY_DATE_START_COLUMN) >=date("2020-08-01")

AWS Glue Scala Upsert

I am trying to Upsert data into an existing S3 bucket from another using AWS Glue in Scala. Is there a standard way to use this? One of the methods that I found was to use SQL's MERGE method. What are the advantages and disadvantages of using that?
Thanks
You can't really implement 'SQL MERGE' method in s3 since it's not possible to update existing data objects.
A workaround is to load existing rows in a Glue job, merge it with incoming dataset, drop obsolete records and overwrite all objects on s3. If you have a lot of data it would be more efficient to partition it by some columns and then override those partitions that should contain new data only.
If you goal is preventing duplicates then you can do similar: load existing, drop those records from incoming dataset that already exist in s3 (loaded on previous step) and then write to s3 new records only.

AWS Glue, data filtering before loading into a frame, naming s3 objects

I have 3 questions, for the following context:
I'm trying to migrate my historical from RDS postgresql to S3. I have about a billion rows of dat in my database,
Q1) Is there a way for me to tell an aws glue job what rows to load? For example i want it to load data from a certain date onwards? There is no bookmarking feature for a PostgreSQL data source,
Q2) Once my data is processed, the glue job automatically creates a name for the s3 output objects, I know i can speciofy the path in DynamicFrame write, but can I specify the object name? if so, how? I cannot find an option for this.
Q3) I tried my glue job on a sample table with 100 rows of data, and it automatically separated the output into 20 files with 5 rows in each of those files, how can I specify the batch size in a job?
Thanks in advance
This is a question I have also posted in AWS Glue forum as well, here is a link to that: https://forums.aws.amazon.com/thread.jspa?threadID=280743
Glue supports pushdown predicates feature, however currently it works with partitioned data on s3 only. There is a feature request to support it for JDBC connections though.
It's not possible to specify name of output files. However, looks like there is an option with renaming files (note that renaming on s3 means copying file from one location into another so it's costly and not atomic operation)
You can't really control the size of output files. There is an option to control min number of files using coalesce though. Also starting from Spark 2.2 there is a possibility to set max number of records per file by setting config spark.sql.files.maxRecordsPerFile

Describe Impala Query Metadata

Is there a way of getting the metadata of a query?
I can use DESCRIBE but this only applies to tables, I don't really want to have to create a table from the query and get the metadata of that table as that would be unnecessarily expensive even if I limited the result rows.
I'm using impala shell to output queries to delimited files (usually only a couple of hundred rows) which are sometimes needed to be imported into an Access database.
I'd like to know the data types as then I can make Access use the correct data types rather than defaulting to string.
The answer, thanks to #SamsonScharfrichter is
CREATE VIEW xxxx AS, then DESCRIBE xxxx, then DROP VIEW xxxx.