Function and its gradient in Matlab - matlab

I am working on a Matlab project and I want to make the gradient of the following function in Matlab:
f(x) = c^T * x - sum (log(bi - (ai ^ T) * x)).
Where ai^T are the rows of a random A matrix nxm , where n=2, and m=20
c is random matrix nx1, and x is also random nx1.
b is random matrix mx1.
I've done the following but the results i get don't seem to be right..
function gc0 = gc(x, c, b, A)
for k = 1 : length(A(:,1))
f1(k) = sum(log(b - A(k,:)'*x(k)));
end
gradient(-f1)
gc0 = c - gradient(f1)';
Any ideas? I'd appreciate your help, I'm newbie in Matlab..

It seems that your loop contains a mistake. Looking at the formula above,
I think that the function evaluation should be
f1 = c'*x;
for k = 1 : length(A(1,:))
f1 = f1 - log(b(k) - A(:,k)'*x)
end
A shorter and faster notation for this in Matlab is
f = c'*x - sum(log(b - A' * x)) ;
The function 'gradient' does not calculate the gradient that I think you
want: it returns the differences of matrix entries, and your function f
is a scalar.
Instead, I suggest calculating the derivatives symbolically:
Gradf = c' + sum( A'./(b - A' * x) );

Related

How to determine the size of an input argument for a function handle

I am creating a function that takes in data (x,y,z) and an anonymous function (M) as inputs. M's inputs are data (x,y,z) and a parameter (theta).
I need to determine the dimension of the parameter theta inside FUNC
EDIT: (To add some context)
I have data that follows a known data generating process (DGP). For example, I can generate data using a linear instrumental variable DGP with 1 endogenous variable (hence theta will be dimension 1):
n = 100; q = 10;
theta0 = 1; % true param value
e = randn(n, 1); % 2nd stage error
u = randn(n, 1); % 1st stage error
z = randn(n, q); % instrument
x = z * ones(q, 1) + u; % endog variable
y = x * theta0 + e; % dependent variable
Then I want to estimate theta0 using my own variation of generalized linear methods (FUNC)
M = #(x,y,z,theta) z' * (y - x * theta); % moment condition
thetahat = FUNC(M, x, y, z); % estimate theta0
and FUNC.m is
function out = FUNC(M, x, y, z)
k = ; % (!!!) <-- this is what I need to find out!
objFunc = #(theta) M(x, y, z, theta)' * M(x, y, z, theta);
out = fminunc(objFunc, ones(1, k)); % <-- this is where its used
end
In the above example, the DGP is a linear IV model. However, I should be able to use my function for any other DGP.
Other DGPs could, for example, define M as follows:
% E.g. 1) theta is dimension 1
M=#(x,y,z,theta) z' * (y - x * theta);
% E.g. 2) theta is dimension 2
M=#(x,y,z,theta) z' * (y - (x * theta(1))^theta(2));
% E.g. 3) theta is dimension 3
M=#(x,y,z,theta) z' * (y - (theta(1) + x * theta(2))^theta(3));
The (super bad) hack that I am currently using for (!!!) is:
for ktest = [3,2,1] % the dimension of theta will never be higher than 3
try
M(x, y, z, ones(1, ktest);
k = ktest;
end
end
Since you know already what the form and requirements of your function M will be when you pass it to FUNC, it doesn't make much sense to then require FUNC to determine it based only on M. It would make much more sense to pass flag values or needed information to FUNC when you pass it M. I would write FUNC in one of two ways:
function out = FUNC(M, x, y, z, k) % Accept k as an argument
...
end
function out = FUNC(M, x, y, z, theta0) % Pass the initial guess, of the correct size
...
end
If you really want to let FUNC do the extra work, then the answer from excaza is how I would do it.
Old answer below. not really valid since the question was clarified, but I'm leaving it temporarily...
I think you have two better options here...
Make M a cell array of anonymous functions:
You could make your input M a cell array of possible anonymous functions and use the number of values in theta as the index. You would pass this M to FUNC:
M = {#(x,y,z,theta) z' * (y - x * theta), ...
#(x,y,z,theta) z' * (y - (x * theta(1))^theta(2)), ...
#(x,y,z,theta) z' * (y - (theta(1) + x * theta(2))^theta(3))};
Then somewhere inside FUNC:
out = M{numel(theta)}(x, y, z, theta);
Make M a normal function instead of an anonymous one:
An anonymous function is good for quick, simple formulas. Add in conditional logic and you should probably just make it a fully-fledged function. Here's an example with a switch statement (good for if you have a number of different formulas):
function out = M(x, y, x, theta)
switch numel(theta)
case 1
out = z' * (y - x * theta);
case 2
out = z' * (y - (x * theta(1))^theta(2));
case 3
out = z' * (y - (theta(1) + x * theta(2))^theta(3));
end
end
And here's an example that sets some defaults for parameters (good for if you have one formula with different ways to set its parameters, like you seem to have):
function out = M(x, y, x, theta)
switch numel(theta)
case 1
p1 = 0;
p2 = theta;
p3 = 1;
case 2
p1 = 0;
p2 = theta(1);
p3 = theta(2);
case 3
p1 = theta(1);
p2 = theta(2);
p3 = theta(3);
end
out = z' * (y - (p1 + x * p2)^p3);
end
MATLAB doesn't store any information about the size of the inputs to an anonymous function. While a better idea would be to modify your code so you don't have to do these kinds of gymnastics, if your function definition is known to fit a narrow band of possibilities you could use a regular expression to parse the function definition itself. You can get this string from the return of functions.
For example:
function [nelements] = findsizetheta(fh)
defstr = func2str(fh);
test = regexp(defstr, 'theta\((\d+)\)', 'tokens');
if isempty(test)
% Assume we have theta instead of theta(1)
nelements = 1;
else
nelements = max(str2double([test{:}]));
end
end
Which returns 1, 2, and 3 for your example definitions of M.
This assumes that theta is present in you anonymous function and that it is defined as a vector.
Also note that MATLAB cautions against utilizing functions in a programmatic manner, as its behavior may change in future releases. This was tested to function in R2017b.

Create a variable number of terms in an anonymous function that outputs a vector

I'd like to create an anonymous function that does something like this:
n = 5;
x = linspace(-4,4,1000);
f = #(x,a,b,n) a(1)*exp(b(1)^2*x.^2) + a(2)*exp(b(2)^2*x.^2) + ... a(n)*exp(b(n)^2*x.^2);
I can do this as such, without passing explicit parameter n:
f1 = #(x,a,b) a(1)*exp(-b(1)^2*x.^2);
for j = 2:n
f1 = #(x,a,b) f1(x,a,b) + a(j)*exp(b(j)^2*x.^2);
end
but it seems, well, kind of hacky. Does someone have a better solution for this? I'd like to know how someone else would treat this.
Your hacky solution is definitely not the best, as recursive function calls in MATLAB are not very efficient, and you can quickly run into the maximum recursion depth (500 by default).
You can introduce a new dimension along which you can sum up your arrays a and b. Assuming that x, a and b are row vectors:
f = #(x,a,b,n) a(1:n)*exp((b(1:n).^2).'*x.^2)
This will use the first dimension as summing dimension: (b(1:n).^2).' is a column vector, which produces a matrix when multiplied by x (this is a dyadic product, to be precise). The resulting n * length(x) matrix can be multiplied by a(1:n), since the latter is a matrix of size [1,n]. This vector-matrix product will also perform the summation for us.
Mini-proof:
n = 5;
x = linspace(-4,4,1000);
a = rand(1,10);
b = rand(1,10);
y = 0;
for k=1:n
y = y + a(k)*exp(b(k)^2*x.^2);
end
y2 = a(1:n)*exp((b(1:n).^2).'*x.^2); %'
all(abs(y-y2))<1e-10
The last command returns 1, so the two are essentially identical.

Series expansion of a function about infinity - how to return coefficients of series as a Matlab array?

This question is connected to this one. Suppose again the following code:
syms x
f = 1/(x^2+4*x+9)
Now taylor allows the function f to be expanded about infinity:
ts = taylor(f,x,inf,'Order',100)
But the following code
c = coeffs(ts)
produces errors, because the series does not contain positive powers of x (it contains negative powers of x).
In such a case, what code should be used?
Since the Taylor Expansion around infinity was likely performed with the substitution y = 1/x and expanded around 0, I would explicitly make that substitution to make the power positive for use on coeffs:
syms x y
f = 1/(x^2+4x+9);
ts = taylor(f,x,inf,'Order',100);
[c,ty] = coeffs(subs(ts,x,1/y),y);
tx = subs(ty,y,1/x);
The output from taylor is not a multivariate polynomial, so coeffs won't work in this case. One thing you can try is using collect (you may get the same or similar result from using simplify):
syms x
f = 1/(x^2 + 4*x + 9);
ts = series(f,x,Inf,'Order',5) % 4-th order Puiseux series of f about 0
c = collect(ts)
which returns
ts =
1/x^2 - 4/x^3 + 7/x^4 + 8/x^5 - 95/x^6
c =
(x^4 - 4*x^3 + 7*x^2 + 8*x - 95)/x^6
Then you can use numden to extract the numerator and denominator from either c or ts:
[n,d] = numden(ts)
which returns the following polynomials:
n =
x^4 - 4*x^3 + 7*x^2 + 8*x - 95
d =
x^6
coeffs can then be used on the numerator. You may find other functions listed here helpful as well.

What is wrong in this Discrete Integration with Galois Fields in Matlab

I want to implement Discrete Integration with Galois Fields in Matlab where the time step is not constant.
Assume that it is this:
My attempt
function [ int ] = integrate_matlab( YDataVector, a, b )
%integrate_matlab Calculate the discrete integral
% Discrete Matlab Integration
% int_1^N x(t_k) * (b-a)/N, where t_k = a + (b-a) k/N
%
% YDataVector - Galois vector (255 x 1 gf), this is signal,
% which values you can reach by YDataVector.x
%
% int - returns Galois vector (255 x 1 gf)
N = length(YDataVector);
for k=1:N
tk = a + (b - a) * k/N;
int = xtk(YDataVector, k) * (b - a) / N;
% How to implement the function xtk(YDataVector)?
end
and then the function xtk
function [ xtk_result ] = xtk( YDataVector, k )
%xkt Summary of this function goes here
% YDataVector - Galois vector (255 x 1 gf), this is signal
% xtk_result - Galois vector (255 x 1 gf)
% k - index, this must be here to be able calculate different xtk for different iterations
xtk_result = ; // I do not know what to fill here
end
I am confused by the mathematical series equation x(tk) for tk.
I know that I am doing now this wrong.
The writing x(tk) just confuses me, since I think it as a function that takes in the series.
I know that it is a signal at some time point, here the YDataVector, but how to implement it I have forgotten.
I should probably iterate the series first:
t_0 = a;
t_1 = a + (b - a) * 1/N;
This does not seem to help, since tk is not defined iteratively.
What am I thinking wrong when implementing the series x(tk)?
Assuming that t contains the time that corresponds to each element of x (stored in YDataVector.x). Then if I understood correctly your question you can get x_tk with something like this :
N = length(YDataVector.x) ;
k = 1 : N;
tk = a + (b-a)* k/N ;
x_tk = interp1(t,YDataVector.x,tk);

how to solve a system of Ordinary Differential Equations (ODE's) in Matlab

I have to solve a system of ordinary differential equations of the form:
dx/ds = 1/x * [y* (g + s/y) - a*x*f(x^2,y^2)]
dy/ds = 1/x * [-y * (b + y) * f()] - y/s - c
where x, and y are the variables I need to find out, and s is the independent variable; the rest are constants. I've tried to solve this with ode45 with no success so far:
y = ode45(#yprime, s, [1 1]);
function dyds = yprime(s,y)
global g a v0 d
dyds_1 = 1./y(1) .*(y(2) .* (g + s ./ y(2)) - a .* y(1) .* sqrt(y(1).^2 + (v0 + y(2)).^2));
dyds_2 = - (y(2) .* (v0 + y(2)) .* sqrt(y(1).^2 + (v0 + y(2)).^2))./y(1) - y(2)./s - d;
dyds = [dyds_1; dyds_2];
return
where #yprime has the system of equations. I get the following error message:
YPRIME returns a vector of length 0, but the length of initial
conditions vector is 2. The vector returned by YPRIME and the initial
conditions vector must have the same number of elements.
Any ideas?
thanks
Certainly, you should have a look at your function yprime. Using some simple model that shares the number of differential state variables with your problem, have a look at this example.
function dyds = yprime(s, y)
dyds = zeros(2, 1);
dyds(1) = y(1) + y(2);
dyds(2) = 0.5 * y(1);
end
yprime must return a column vector that holds the values of the two right hand sides. The input argument s can be ignored because your model is time-independent. The example you show is somewhat difficult in that it is not of the form dy/dt = f(t, y). You will have to rearrange your equations as a first step. It will help to rename x into y(1) and y into y(2).
Also, are you sure that your global g a v0 d are not empty? If any one of those variables remains uninitialized, you will be multiplying state variables with an empty matrix, eventually resulting in an empty vector dyds being returned. This can be tested with
assert(~isempty(v0), 'v0 not initialized');
in yprime, or you could employ a debugging breakpoint.
the syntax for ODE solvers is [s y]=ode45(#yprime, [1 10], [2 2])
and you dont need to do elementwise operation in your case i.e. instead of .* just use *