how to solve a system of Ordinary Differential Equations (ODE's) in Matlab - matlab

I have to solve a system of ordinary differential equations of the form:
dx/ds = 1/x * [y* (g + s/y) - a*x*f(x^2,y^2)]
dy/ds = 1/x * [-y * (b + y) * f()] - y/s - c
where x, and y are the variables I need to find out, and s is the independent variable; the rest are constants. I've tried to solve this with ode45 with no success so far:
y = ode45(#yprime, s, [1 1]);
function dyds = yprime(s,y)
global g a v0 d
dyds_1 = 1./y(1) .*(y(2) .* (g + s ./ y(2)) - a .* y(1) .* sqrt(y(1).^2 + (v0 + y(2)).^2));
dyds_2 = - (y(2) .* (v0 + y(2)) .* sqrt(y(1).^2 + (v0 + y(2)).^2))./y(1) - y(2)./s - d;
dyds = [dyds_1; dyds_2];
return
where #yprime has the system of equations. I get the following error message:
YPRIME returns a vector of length 0, but the length of initial
conditions vector is 2. The vector returned by YPRIME and the initial
conditions vector must have the same number of elements.
Any ideas?
thanks

Certainly, you should have a look at your function yprime. Using some simple model that shares the number of differential state variables with your problem, have a look at this example.
function dyds = yprime(s, y)
dyds = zeros(2, 1);
dyds(1) = y(1) + y(2);
dyds(2) = 0.5 * y(1);
end
yprime must return a column vector that holds the values of the two right hand sides. The input argument s can be ignored because your model is time-independent. The example you show is somewhat difficult in that it is not of the form dy/dt = f(t, y). You will have to rearrange your equations as a first step. It will help to rename x into y(1) and y into y(2).
Also, are you sure that your global g a v0 d are not empty? If any one of those variables remains uninitialized, you will be multiplying state variables with an empty matrix, eventually resulting in an empty vector dyds being returned. This can be tested with
assert(~isempty(v0), 'v0 not initialized');
in yprime, or you could employ a debugging breakpoint.

the syntax for ODE solvers is [s y]=ode45(#yprime, [1 10], [2 2])
and you dont need to do elementwise operation in your case i.e. instead of .* just use *

Related

Laguerre's method to obtain poly roots (Matlab)

I must write using Laguerre's method a piece of code to find the real and complex roots of poly:
P=X^5-5*X^4-6*X^3+6*X^2-3*X+1
I have little doubt. I did the algorithm in the matlab, but 3 out of 5 roots are the same and I don't think that is correct.
syms X %Declearing x as a variabl
P=X^5-5*X^4-6*X^3+6*X^2-3*X+1; %Equation we interest to solve
n=5; % The eq. order
Pd1 = diff(P,X,1); % first differitial of f
Pd2 = diff(P,X,2); %second differitial of f
err=0.00001; %Answear tollerance
N=100; %Max. # of Iterations
x(1)=1e-3; % Initial Value
for k=1:N
G=double(vpa(subs(Pd1,X,x(k))/subs(P,X,x(k))));
H=G^2 - double(subs(Pd2,X,x(k))) /subs(P,X,x(k));
D1= (G+sqrt((n-1)*(n*H-G^2)));
D2= (G-sqrt((n-1)*(n*H-G^2)));
D = max(D1,D2);
a=n/D;
x(k+1)=x(k)-a
Err(k) = abs(x(k+1)-x(k));
if Err(k) <=err
break
end
end
output (roots of polynomial):
x =
0.0010 + 0.0000i 0.1434 + 0.4661i 0.1474 + 0.4345i 0.1474 + 0.4345i 0.1474 + 0.4345i
What you actually see are all the values x(k) which arose in the loop. The last one, 0.1474 + 0.4345i is the end result of this loop - the approximation of the root which is in your given tolerance threshold. The code
syms X %Declaring x as a variable
P = X^5 - 5 * X^4 - 6 * X^3 + 6 * X^2 - 3 * X + 1; %Polynomial
n=5; %Degree of the polynomial
Pd1 = diff(P,X,1); %First derivative of P
Pd2 = diff(P,X,2); %Second derivative of P
err = 0.00001; %Answer tolerance
N = 100; %Maximal number of iterations
x(1) = 0; %Initial value
for k = 1:N
G = double(vpa(subs(Pd1,X,x(k)) / subs(P,X,x(k))));
H = G^2 - double(subs(Pd2,X,x(k))) / subs(P,X,x(k));
D1 = (G + sqrt((n-1) * (n * H-G^2)));
D2 = (G - sqrt((n-1) * (n * H-G^2)));
D = max(D1,D2);
a = n/D;
x(k+1) = x(k) - a;
Err(k) = abs(x(k+1)-x(k));
if Err(k) <=err
fprintf('Initial value %f, result %f%+fi', x(1), real(x(k)), imag(x(k)))
break
end
end
results in
Initial value -2.000000, result -1.649100+0.000000i
If you want to get other roots, you have to use other initial values. For example one can obtain
Initial value 10.000000, result 5.862900+0.000000i
Initial value -2.000000, result -1.649100+0.000000i
Initial value 3.000000, result 0.491300+0.000000i
Initial value 0.000000, result 0.147400+0.434500i
Initial value 1.000000, result 0.147400-0.434500i
These are all zeros of the polynomial.
A method for calculating the next root when you have found another one would be that you divide through the corresponding linear factor and use your loop for the resulting new polynomial. Note that this is in general not very easy to handle since rounding errors can have a big influence on the result.
Problems with the existing code
You do not implement the Laguerre method properly as a method in complex numbers. The denominator candidates D1,D2 are in general complex numbers, it is inadvisable to use the simple max which only has sensible results for real inputs. The aim is to have a=n/D be the smaller of both variants, so that one has to look for the D in [D1,D2] with the larger absolute value. If there were a conditional assignment as in C, this would look like
D = (abs(D_1)>abs(D2)) ? D1 : D2;
As that does not exist, one has to use commands with a similar result
D = D1; if (abs(D_1)<abs(D2)) D=D2; end
The resulting sequence of approximation points is
x(0) = 0.0010000
x(1) = 0.143349512707684+0.466072958423667i
x(2) = 0.164462212064089+0.461399841949893i
x(3) = 0.164466373475316+0.461405404094130i
There is a point where one can not expect the (residual) polynomial value at the root approximation to substantially decrease. The value close to zero is obtained by adding and subtracting rather large terms in the sum expression of the polynomial. The accuracy lost in these catastrophic cancellation events can not be recovered.
The threshold for polynomial values that are effectively zero can be estimated as the machine constant of the double type times the polynomial value where all coefficients and the evaluation point are replaced by their absolute values. This test serves in the code primarily to avoid divisions by zero or near-zero.
Finding all roots
One approach is to apply the method to a sufficiently large number of initial points along some circle containing all the roots, with some strict rules for early termination at too slow convergence. One would have to make the list of the roots found unique, but keep the multiplicity,...
The other standard method is to apply deflation, that is, divide out the linear factor of the root found. This works well in low degrees.
There is no need for the slower symbolic operations as there are functions that work directly on the coefficient array, such as polyval and polyder. Deflation by division with remainder can be achieved using the deconv function.
For real polynomials, we know that the complex conjugate of a root is also a root. Thus initialize the next iteration with the deflated polynomial with it.
Other points:
There is no point in the double conversions as at no point there is a conversion into the single type.
If you don't do anything with it, it makes no sense to create an array, especially not for Err.
Roots of the example
Implementing all this I get a log of
x(0) = 0.001000000000000+0.000000000000000i, |Pn(x(0))| = 0.99701
x(1) = 0.143349512707684+0.466072958423667i, |dx|= 0.48733
x(2) = 0.164462212064089+0.461399841949893i, |dx|=0.021624
x(3) = 0.164466373475316+0.461405404094130i, |dx|=6.9466e-06
root found x=0.164466373475316+0.461405404094130i with value P0(x)=-2.22045e-16+9.4369e-16i
Deflation
x(0) = 0.164466373475316-0.461405404094130i, |Pn(x(0))| = 2.1211e-15
root found x=0.164466373475316-0.461405404094130i with value P0(x)=-2.22045e-16-9.4369e-16i
Deflation
x(0) = 0.164466373475316+0.461405404094130i, |Pn(x(0))| = 4.7452
x(1) = 0.586360702193454+0.016571894375927i, |dx|= 0.61308
x(2) = 0.562204173408499+0.000003168181059i, |dx|=0.029293
x(3) = 0.562204925474889+0.000000000000000i, |dx|=3.2562e-06
root found x=0.562204925474889+0.000000000000000i with value P0(x)=2.22045e-16-1.33554e-17i
Deflation
x(0) = 0.562204925474889-0.000000000000000i, |Pn(x(0))| = 7.7204
x(1) = 3.332994579372812-0.000000000000000i, |dx|= 2.7708
root found x=3.332994579372812-0.000000000000000i with value P0(x)=6.39488e-14-3.52284e-15i
Deflation
x(0) = 3.332994579372812+0.000000000000000i, |Pn(x(0))| = 5.5571
x(1) = -2.224132251798332+0.000000000000000i, |dx|= 5.5571
root found x=-2.224132251798332+0.000000000000000i with value P0(x)=-3.33067e-14+1.6178e-15i
for the modified code
P = [1, -2, -6, 6, -3, 1];
P0 = P;
deg=length(P)-1; % The eq. degree
err=1e-05; %Answer tolerance
N=10; %Max. # of Iterations
x=1e-3; % Initial Value
for n=deg:-1:1
dP = polyder(P); % first derivative of P
d2P = polyder(dP); %second derivative of P
fprintf("x(0) = %.15f%+.15fi, |Pn(x(0))| = %8.5g\n", real(x),imag(x), abs(polyval(P,x)));
for k=1:N
Px = polyval(P,x);
dPx = polyval(dP,x);
d2Px = polyval(d2P,x);
if abs(Px) < 1e-14*polyval(abs(P),abs(x))
break % if value is zero in relative accuracy
end
G = dPx/Px;
H=G^2 - d2Px / Px;
D1= (G+sqrt((n-1)*(n*H-G^2)));
D2= (G-sqrt((n-1)*(n*H-G^2)));
D = D1;
if abs(D2)>abs(D1) D=D2; end % select the larger denominator
a=n/D;
x=x-a;
fprintf("x(%d) = %.15f%+.15fi, |dx|=%8.5g\n",k,real(x),imag(x), abs(a));
if abs(a) < err*(err+abs(x))
break
end
end
y = polyval(P0,x); % check polynomial value of the original polynomial
fprintf("root found x=%.15f%+.15fi with value P0(x)=%.6g%+.6gi\n", real(x),imag(x),real(y),imag(y));
disp("Deflation");
[ P,R ] = deconv(P,[1,-x]); % division with remainder
x = conj(x); % shortcut for conjugate pairs and clustered roots
end

How to determine the size of an input argument for a function handle

I am creating a function that takes in data (x,y,z) and an anonymous function (M) as inputs. M's inputs are data (x,y,z) and a parameter (theta).
I need to determine the dimension of the parameter theta inside FUNC
EDIT: (To add some context)
I have data that follows a known data generating process (DGP). For example, I can generate data using a linear instrumental variable DGP with 1 endogenous variable (hence theta will be dimension 1):
n = 100; q = 10;
theta0 = 1; % true param value
e = randn(n, 1); % 2nd stage error
u = randn(n, 1); % 1st stage error
z = randn(n, q); % instrument
x = z * ones(q, 1) + u; % endog variable
y = x * theta0 + e; % dependent variable
Then I want to estimate theta0 using my own variation of generalized linear methods (FUNC)
M = #(x,y,z,theta) z' * (y - x * theta); % moment condition
thetahat = FUNC(M, x, y, z); % estimate theta0
and FUNC.m is
function out = FUNC(M, x, y, z)
k = ; % (!!!) <-- this is what I need to find out!
objFunc = #(theta) M(x, y, z, theta)' * M(x, y, z, theta);
out = fminunc(objFunc, ones(1, k)); % <-- this is where its used
end
In the above example, the DGP is a linear IV model. However, I should be able to use my function for any other DGP.
Other DGPs could, for example, define M as follows:
% E.g. 1) theta is dimension 1
M=#(x,y,z,theta) z' * (y - x * theta);
% E.g. 2) theta is dimension 2
M=#(x,y,z,theta) z' * (y - (x * theta(1))^theta(2));
% E.g. 3) theta is dimension 3
M=#(x,y,z,theta) z' * (y - (theta(1) + x * theta(2))^theta(3));
The (super bad) hack that I am currently using for (!!!) is:
for ktest = [3,2,1] % the dimension of theta will never be higher than 3
try
M(x, y, z, ones(1, ktest);
k = ktest;
end
end
Since you know already what the form and requirements of your function M will be when you pass it to FUNC, it doesn't make much sense to then require FUNC to determine it based only on M. It would make much more sense to pass flag values or needed information to FUNC when you pass it M. I would write FUNC in one of two ways:
function out = FUNC(M, x, y, z, k) % Accept k as an argument
...
end
function out = FUNC(M, x, y, z, theta0) % Pass the initial guess, of the correct size
...
end
If you really want to let FUNC do the extra work, then the answer from excaza is how I would do it.
Old answer below. not really valid since the question was clarified, but I'm leaving it temporarily...
I think you have two better options here...
Make M a cell array of anonymous functions:
You could make your input M a cell array of possible anonymous functions and use the number of values in theta as the index. You would pass this M to FUNC:
M = {#(x,y,z,theta) z' * (y - x * theta), ...
#(x,y,z,theta) z' * (y - (x * theta(1))^theta(2)), ...
#(x,y,z,theta) z' * (y - (theta(1) + x * theta(2))^theta(3))};
Then somewhere inside FUNC:
out = M{numel(theta)}(x, y, z, theta);
Make M a normal function instead of an anonymous one:
An anonymous function is good for quick, simple formulas. Add in conditional logic and you should probably just make it a fully-fledged function. Here's an example with a switch statement (good for if you have a number of different formulas):
function out = M(x, y, x, theta)
switch numel(theta)
case 1
out = z' * (y - x * theta);
case 2
out = z' * (y - (x * theta(1))^theta(2));
case 3
out = z' * (y - (theta(1) + x * theta(2))^theta(3));
end
end
And here's an example that sets some defaults for parameters (good for if you have one formula with different ways to set its parameters, like you seem to have):
function out = M(x, y, x, theta)
switch numel(theta)
case 1
p1 = 0;
p2 = theta;
p3 = 1;
case 2
p1 = 0;
p2 = theta(1);
p3 = theta(2);
case 3
p1 = theta(1);
p2 = theta(2);
p3 = theta(3);
end
out = z' * (y - (p1 + x * p2)^p3);
end
MATLAB doesn't store any information about the size of the inputs to an anonymous function. While a better idea would be to modify your code so you don't have to do these kinds of gymnastics, if your function definition is known to fit a narrow band of possibilities you could use a regular expression to parse the function definition itself. You can get this string from the return of functions.
For example:
function [nelements] = findsizetheta(fh)
defstr = func2str(fh);
test = regexp(defstr, 'theta\((\d+)\)', 'tokens');
if isempty(test)
% Assume we have theta instead of theta(1)
nelements = 1;
else
nelements = max(str2double([test{:}]));
end
end
Which returns 1, 2, and 3 for your example definitions of M.
This assumes that theta is present in you anonymous function and that it is defined as a vector.
Also note that MATLAB cautions against utilizing functions in a programmatic manner, as its behavior may change in future releases. This was tested to function in R2017b.

Solving Set of Second Order ODEs with Matlab ODE45 function

Introduction
NOTE IN CODE AND DISUSSION:
A single d is first derivative A double d is second derivative
I am using Matlab to simulate some dynamic systems through numerically solving the governing LaGrange Equations. Basically a set of Second Order Ordinary Differential Equations. I am using ODE45. I found a great tutorial from Mathworks (link for tutorial below) on how to solve a basic set of second order ordinary differential equations.
https://www.mathworks.com/academia/student_center/tutorials/source/computational-math/solving-ordinary-diff-equations/player.html
Based on the tutorial I simulated the motion for an elastic spring pendulum by obtaining two second order ordinary differential equations (one for angle theta and the other for spring elongation) shown below:
theta double prime equation:
M*thetadd*(L + del)^2 + M*g*sin(theta)*(L + del) + M*deld*thetad*(2*L + 2*del) = 0
del (spring elongation) double prime equation:
K*del + M*deldd - (M*thetad^2*(2*L + 2*del))/2 - M*g*cos(theta) = 0
Both equations above have form ydd = f(x, xd, y, yd)
I solved the set of equations by a common reduction of order method; setting column vector z to [theta, thetad, del, deld] and therefore zd = [thetad, thetadd, deld, deldd]. Next I used two matlab files; a simulation file and a function handle file for ode45. See code below of simulation file and function handle file:
Simulation File
%ElasticPdlmSymMainSim
clc
clear all;
%Define parameters
global M K L g;
M = 1;
K = 25.6;
L = 1;
g = 9.8;
% define initial values for theta, thetad, del, deld
theta_0 = 0;
thetad_0 = .5;
del_0 = 1;
deld_0 = 0;
initialValues = [theta_0, thetad_0, del_0, deld_0];
% Set a timespan
t_initial = 0;
t_final = 36;
dt = .01;
N = (t_final - t_initial)/dt;
timeSpan = linspace(t_final, t_initial, N);
% Run ode45 to get z (theta, thetad, del, deld)
[t, z] = ode45(#OdeFunHndlSpngPdlmSym, timeSpan, initialValues);
Here is the function handle file:
function dz = OdeFunHndlSpngPdlmSym(~, z)
% Define Global Parameters
global M K L g
% Take output from SymDevFElSpringPdlm.m file for fy1 and fy2 and
% substitute into z2 and z4 respectively
% z1 and z3 are simply z2 and z4
% fy1=thetadd=z(2)= -(M*g*sin(z1)*(L + z3) + M*z2*z4*(2*L + 2*z3))/(M*(L + z3)^2)
% fy2=deldd=z(4)=((M*(2*L + 2*z3)*z2^2)/2 - K*z3 + M*g*cos(z1))/M
% return column vector [thetad; thetadd; deld; deldd]
dz = [z(2);
-(M*g*sin(z(1))*(L + z(3)) + M*z(2)*z(4)*(2*L + 2*z(3)))/(M*(L + z(3))^2);
z(4);
((M*(2*L + 2*z(3))*z(2)^2)/2 - K*z(3) + M*g*cos(z(1)))/M];
Question
However, I am coming across systems of equations where the variables can not be solved for explicitly as is the case with spring pendulum example. For one case I have the following set of ordinary differential equations:
y double prime equation
ydd - .5*L*(xdd*sin(x) + xd^2*cos(x) + (k/m)*y - g = 0
x double prime equation
.33*L^2*xdd - .5*L*ydd*sin(x) - .33*L^2*C*cos(x) + .5*g*L*sin(x) = 0
L, g, m, k, and C are given parameters.
Note that x'' term appears in y'' equation and y'' term appears in x'' equation so I am not able to use reduction of order method. Can I use Matlab ODE45 to solve the set of ordinary differential equations in the second example in a manner similar to first example?
Thanks!
This problem can be solved by working out some of the math by hand. The equations are linear in xdd and ydd so it should be straightforward to solve.
ydd - .5*L*(xdd*sin(x) + xd^2*cos(x)) + (k/m)*y - g = 0
.33*L^2*xdd - .5*L*ydd*sin(x) - .33*L^2*C*cos(x) + .5*g*L*sin(x) = 0
can be rewritten as
-.5*L*sin(x)*xdd + ydd = -.5*L*xd^2*cos(x) - (k/m)*y + g
.33*L^2*xdd - .5*L*sin(x)*ydd = .33*L^2*C*cos(x) - .5*g*L*sin(x)
which is the form A*x=b.
For more complex systems, you can look into the fsolve function.

Solve optimization using fmincon MATLAB when objective function is in constraints

I want to solve:
I use following MATLAB code, but it does not work.
Can someone please guide me?
function f=objfun
f=-f;
function [c1,c2,c3]=constraint(x)
a1=1.1; a2=1.1; a3=1.1;
c1=f-log(a1)-log(x(1)/(x(1)+1));
c2=f-log(a2)-log(x(2)/(x(2)+1))-log(1-x(1));
c3=f-log(a3)-log(1-x(1))-log(1-x(2));
x0=[0.01;0.01];
[x,fval]=fmincon('objfun',x0,[],[],[],[],[0;0],[1;1],'constraint')
You need to flip the problem around a bit. You are trying to find the point x (which is (l_1,l_2)) that makes the minimum of the 3 LHS functions the largest. So, you can rewrite your problem as, in pseudocode,
maximise, by varying x in [0,1] X [0,1]
min([log(a1)+log(x(1)/(x(1)+1)) ...
log(a2)+log(x(2)/(x(2)+1))+log(1-x(1)) ...
log(a3)+log(1-x(1))+log(1-x(2))])
Since Matlab has fmincon, rewrite this as a minimisation problem,
minimise, by varying x in [0,1] X [0,1]
max(-[log(a1)+log(x(1)/(x(1)+1)) ...
log(a2)+log(x(2)/(x(2)+1))+log(1-x(1)) ...
log(a3)+log(1-x(1))+log(1-x(2))])
So the actual code is
F=#(x) max(-[log(a1)+log(x(1)/(x(1)+1)) ...
log(a2)+log(x(2)/(x(2)+1))+log(1-x(1)) ...
log(a3)+log(1-x(1))+log(1-x(2))])
[L,fval]=fmincon(F,[0.5 0.5])
which returns
L =
0.3383 0.6180
fval =
1.2800
Can also solve this in the convex optimization package CVX with the following MATLAB code:
cvx_begin
variables T(1);
variables x1(1);
variables x2(1);
maximize(T)
subject to:
log(a1) + x1 - log_sum_exp([0, x1]) >= T;
log(a2) + x2 - log_sum_exp([0, x2]) + log(1 - exp(x1)) >= T;
log(a3) + log(1 - exp(x1)) + log(1 - exp(x2)) >= T;
x1 <= 0;
x2 <= 0;
cvx_end
l1 = exp(x1); l2 = exp(x2);
To use CVX, each constraint and the objective function has to be written in a way that is proveably convex using CVX's ruleset. Making the substitution x1 = log(l1) and x2 = log(l2) allows one to do that. Note that: log_sum_exp([0,x1]) = log(exp(0) + exp(x1)) = log(1 + l1)
This also returns the answers: l1 = .3383, l2 = .6180, T = -1.2800

Sending a function into a matlab function

I'm trying build a matlab function that will evaluate a function and vector that are sent in as parameters. I'm having a hard time trying to figure out how to send in the function so that it can be evaluated in the matlab function. I figured out how to do it without the function but I'm a little lost trying to evaluate it within a matlab function. Below is my code...
This is what I'm trying to do...
x = [x1 x2]';
f = x(x1)^2 + 2 * (x2)^2
x = [5 10];
f = (5)^2 + 2 * (10)^2 % which I would like to return 225, not a column vector
This is what I have and what I have tried...
x = [5 10]';
% without using a matlab function
% k = 1
% f = x(k)^2 + 2 * x(k + 1)^2; % returns the correct answer of 225
f = x^2 + 2 * x^2 % complains about the scalar 2
f = x.^2 + 2 * x.^2 % returns a column vector [75; 300]
function [value] = evalFunction(f,x)
value = f(x);
I've tried...
f = #(x) x.^2 + 2 * (x+1).^2;
value = evalFunction(#f,x) %Error: "f" was previously used as a variable
So I tried...
f = #(x) x.^2 + 2 * (x+1).^2;
value = evalFunction(f,x) %value = [97;342]
I'm new to matlab so any help is appreciated. I've been doing some research and found some stuff here on stackoverflow but can't seem to get it to work. I've seen there are other ways to do this, but I will eventually be adding more code to the matlab evalFunction function so I'd like to do it this way. Thanks!
Anonymous functions and function handles plus array indexing. Taking x as a 2-element vector, define and use your function like:
f = #(x) x(1).^2 + 2 * x(2).^2;
value = evalFunction(f,x) % but you can just do f(x) if that is all you need
However, if evalFunction does nothing other than evaluate f at x, then you don't need it at all. Just do f(x).
Alternately,
f = #(x1,x2) x1.^2 + 2*x2.^2;
value = evalFunction(f,x1,x2); % here your function will call it by f(x1,x2)
You are probably coming at this from a C background - in Matlab, x+1 is the entire vector x with 1 added - not the element offset by 1.
The function you need is
f = #(x)x(1).^2 + 2 * (x(2)).^2;
or, to be a little more "matlab-like":
f = #(x) [1 2] * x(1:2)'.^2;
Which performs the element-wise square of the first two elements of x as a column vector, and then does the matrix multiplication with [1 2], resulting in
1 * x(1) .^2 + 2 * x(2) .^2;
Which seems to be what you were asking for.
caveat: did not have opportunity to test this...