I am trying to solve a particular system of ODE's dF/dt = A*F, F_initial = eye(9). Being a Matlab novice, I am trying to somehow use the implemented ode45 function, and I found useful advises online. However, all of them assume A to be constant, while in my case the matrix A is a function of t, in other words, A changes with each time step.
I have solved A separately and stored it in a 9x9xN array (because my grid is t = 0:dt:2, N=2/dt is the number of time-steps, and A(:,:,i) corresponds to it's value at the i-th time step). But I can't implement this array in ode45 to eventually solve my ODE.
Any help is welcomed, and please tell me if I have missed anything important while explaining my problem. Thank you
First of all, F must be a column vector when using ode45. You won't ever get a result by setting F_initial = eye(9), you'd need F = ones(9,1).
Also, ode45 (documentation here, check tspan section) doesn't necessarily evaluate your function at the timesteps that you give it, so you can't pre-compute the A matrix. Here I'm going to assume that F is a column vector and A is a matrix which acts on it, which can be computed each timestep. If this is the case, then we can just include A in the function passed to ode45, like so:
F_initial = ones(9,1);
dt = 0.01;
tspan = 0:2/dt:2;
[t, F] = ode45(#(t,F) foo(t, F, Ainput), tspan, F_initial);
function f = foo(t, F, Ainput)
A = calculate_A(t, Ainput);
f = A*F;
end
function A = calculate_A(t, Ainput)
%some logic, calculate A based on inputs and timestep
A = ones(9,9)*sqrt(t)*Ainput;
end
The #(x) f(x,y) basically creates a new anonymous function which allows you to treat y as a constant in the calculation.
Hope this is helpful, let me know if I've misunderstood something or if you have other questions.
Related
How do I solve the following system of equations on MATLAB when one of the elements of the variable vector is a constant? Please do give the code if possible.
More generally, if the solution is to use symbolic math, how will I go about generating large number of variables, say 12 (rather than just two) even before solving them?
For example, create a number of symbolic variables using syms, and then make the system of equations like below.
syms a1 a2
A = [matrix]
x = [1;a1;a2];
y = [1;0;0];
eqs = A*x == y
sol = solve(eqs,[a1, a2])
sol.a1
sol.a2
In case you have a system with many variables, you could define all the symbols using syms, and solve it like above.
You could also perform a parameter optimization with fminsearch. First you have to define a cost function, in a separate function file, in this example called cost_fcn.m.
function J = cost_fcn(p)
% make sure p is a vector
p = reshape(p, [length(p) 1]);
% system of equations, can be linear or nonlinear
A = magic(12); % your system, I took some arbitrary matrix
sol = A*p;
% the goal of the system of equations to reach, can be zero, or some other
% vector
goal = zeros(12,1);
% calculate the error
error = goal - sol;
% Use a cost criterion, e.g. sum of squares
J = sum(error.^2);
end
This cost function will contain your system of equations, and goal solution. This can be any kind of system. The vector p will contain the parameters that are being estimated, which will be optimized, starting from some initial guess. To do the optimization, you will have to create a script:
% initial guess, can be zeros, or some other starting point
p0 = zeros(12,1);
% do the parameter optimization
p = fminsearch(#cost_fcn, p0);
In this case p0 is the initial guess, which you provide to fminsearch. Then the values of this initial guess will be incremented, until a minimum to the cost function is found. When the parameter optimization is finished, p will contain the parameters that will result in the lowest error for your system of equations. It is however possible that this is a local minimum, if there is no exact solution to the problem.
Your system is over-constrained, meaning you have more equations than unknown, so you can't solve it. What you can do is find a least square solution, using mldivide. First re-arrange your equations so that you have all the constant terms on the right side of the equal sign, then use mldivide:
>> A = [0.0297 -1.7796; 2.2749 0.0297; 0.0297 2.2749]
A =
0.029700 -1.779600
2.274900 0.029700
0.029700 2.274900
>> b = [1-2.2749; -0.0297; 1.7796]
b =
-1.274900
-0.029700
1.779600
>> A\b
ans =
-0.022191
0.757299
I have the equation of the lognormal:
y = 1/(3.14*x*sig)*exp(-(log(x)-mu)^2/(2*sig^2))
and for fixed
y = a
x = b
I need to find the values of mu and sig. I can set mu in Matlab like:
mu = [0 1 1.1 1.2...]
and find all the values corresponding sig values, but I can't make it with solve or subs. Any ideas please???
Thanks!
Here's a proof of concept to use fzero to numerically search for a sigma(x,y,mu) function.
Assuming you have x,y fixed, you can set
mu = 1; %or whatever
myfun = #(sig) y-1./(3.14*x*sig).*exp(-(log(x)-mu)^2./(2*sig.^2)); %x,y,mu from workspace
sigma = fzero(myfun,1);
This will solve the equation
y-1/(3.14*x*sig)*exp(-(log(x)-mu)^2/(2*sig^2))==0
for sig starting from sig==1 and return it into sigma.
You can generalize it to get a function of mu:
myfun2 = #(mu,sig) y-1./(3.14*x*sig).*exp(-(log(x)-mu).^2./(2*sig.^2));
sigmafun=#(mu) fzero(#(sig)myfun2(mu,sig),1);
then sigmafun will give you a sigma for each value of mu you put into it. The parameters x and y are assumed to be set before the first anonymous function declaration.
Or you could get reaaally general, and define
myfun3 = #(x,y,mu,sig) y-1./(3.14*x*sig).*exp(-(log(x)-mu).^2./(2*sig.^2));
sigmafun2 = #(x,y,mu) fzero(#(sig)myfun3(x,y,mu,sig),1);
The main difference here is that x and y are fed into the function of sigmafun2 each time, so they can change. In the earlier cases the values of x and y were fixed in the anonymous functions at the time of their definition, i.e. when we issued myfun = #(sig).... Depending on your needs you can find out what you want to use.
As a proof of concept, I didn't check how well it behaved for the actual problem. You should definitely have an initial idea of what kind of parameters you expect, since there will be many cases where there's no solution, and fzero will return a NaN.
Update by Oliver Amundsen: the resulting sig(mu) function with x=100, y=0.001 looks like this:
I have an equation of the form c = integral of f(t)dt limiting from a constant to a variable (I don't want to show the full equation because it is very long and complex). Is there any way to calculate in MATLAB what the value of that variable is (there are no other variables and the equation is too difficult to solve by hand)?
Assume your limit is from cons to t and g(t) as your function with variable t. Now,
syms t
f(t) = int(g(t),t);
This will give you the indefinite integral. Now f(t) will be
f(t) = f(t)+f(cons);
You have the value of f(t)=c. So just solve the equation
S = solve(f(t)==c,t,'Real',true);
eval(S) will give the answer i think
This is an extremely unclear question - if you do not want to post the full equation, post an example instead
I am assuming this is what you intend: you have an integrand f(x), which you know, and has been integrated to give some constant c which you know, over the limits of x = 0, to x = y, for example, where y may change, and you desire to find y
My advice would be to integrate f(x) manually, fill in the first limit, and subtract that portion from c. Next you could employ some technique such as the Newton-Ralphson method to iteratively search for the root to your equation, which should be in x only
You could use a function handle and the quad function for the integral
myFunc = #(t) exp(t*3); % or whatever
t0 = 0;
t1 = 3;
L = 50;
f = #(b) quad(#(t) myFunc(t,b),t0,t1);
bsolve = fzero(f,2);
Hope it help !
I have the following ODE:
x_dot = 3*x.^0.5-2*x.^1.5 % (Equation 1)
I am using ode45 to solve it. My solution is given as a vector of dim(k x 1) (usually k = 41, which is given by the tspan).
On the other hand, I have made a model that approximates the model from (1), but in order to compare how accurate this second model is, I want to solve it (solve the second ODE) by means of ode45. My problem is that this second ode is given discrete:
x_dot = f(x) % (Equation 2)
f is discrete and not a continuous function like in (1). The values I have for f are:
0.5644
0.6473
0.7258
0.7999
0.8697
0.9353
0.9967
1.0540
1.1072
1.1564
1.2016
1.2429
1.2803
1.3138
1.3435
1.3695
1.3917
1.4102
1.4250
1.4362
1.4438
1.4477
1.4482
1.4450
1.4384
1.4283
1.4147
1.3977
1.3773
1.3535
1.3263
1.2957
1.2618
1.2246
1.1841
1.1403
1.0932
1.0429
0.9893
0.9325
0.8725
What I want now is to solve this second ode using ode45. Hopefully I will get a solution very similar that the one from (1). How can I solve a discrete ode applying ode45? Is it possible to use ode45? Otherwise I can use Runge-Kutta but I want to be fair comparing the two methods, which means that I have to solve them by the same way.
You can use interp1 to create an interpolated lookup table function:
fx = [0.5644 0.6473 0.7258 0.7999 0.8697 0.9353 0.9967 1.0540 1.1072 1.1564 ...
1.2016 1.2429 1.2803 1.3138 1.3435 1.3695 1.3917 1.4102 1.4250 1.4362 ...
1.4438 1.4477 1.4482 1.4450 1.4384 1.4283 1.4147 1.3977 1.3773 1.3535 ...
1.3263 1.2957 1.2618 1.2246 1.1841 1.1403 1.0932 1.0429 0.9893 0.9325 0.8725];
x = 0:0.25:10
f = #(xq)interp1(x,fx,xq);
Then you should be able to use ode45 as normal:
tspan = [0 1];
x0 = 2;
xout = ode45(#(t,x)f(x),tspan,x0);
Note that you did not specify what values of of x your function (fx here) is evaluated over so I chose zero to ten. You'll also not want to use the copy-and-pasted values from the command window of course because they only have four decimal places of accuracy. Also, note that because ode45 required the inputs t and then x, I created a separate anonymous function using f, but f can created with an unused t input if desired.
We have an equation similar to the Fredholm integral equation of second kind.
To solve this equation we have been given an iterative solution that is guaranteed to converge for our specific equation. Now our only problem consists in implementing this iterative prodedure in MATLAB.
For now, the problematic part of our code looks like this:
function delta = delta(x,a,P,H,E,c,c0,w)
delt = #(x)delta_a(x,a,P,H,E,c0,w);
for i=1:500
delt = #(x)delt(x) - 1/E.*integral(#(xi)((c(1)-c(2)*delt(xi))*ms(xi,x,a,P,H,w)),0,a-0.001);
end
delta=delt;
end
delta_a is a function of x, and represent the initial value of the iteration. ms is a function of x and xi.
As you might see we want delt to depend on both x (before the integral) and xi (inside of the integral) in the iteration. Unfortunately this way of writing the code (with the function handle) does not give us a numerical value, as we wish. We can't either write delt as two different functions, one of x and one of xi, since xi is not defined (until integral defines it). So, how can we make sure that delt depends on xi inside of the integral, and still get a numerical value out of the iteration?
Do any of you have any suggestions to how we might solve this?
Using numerical integration
Explanation of the input parameters: x is a vector of numerical values, all the rest are constants. A problem with my code is that the input parameter x is not being used (I guess this means that x is being treated as a symbol).
It looks like you can do a nesting of anonymous functions in MATLAB:
f =
#(x)2*x
>> ff = #(x) f(f(x))
ff =
#(x)f(f(x))
>> ff(2)
ans =
8
>> f = ff;
>> f(2)
ans =
8
Also it is possible to rebind the pointers to the functions.
Thus, you can set up your iteration like
delta_old = #(x) delta_a(x)
for i=1:500
delta_new = #(x) delta_old(x) - integral(#(xi),delta_old(xi))
delta_old = delta_new
end
plus the inclusion of your parameters...
You may want to consider to solve a discretized version of your problem.
Let K be the matrix which discretizes your Fredholm kernel k(t,s), e.g.
K(i,j) = int_a^b K(x_i, s) l_j(s) ds
where l_j(s) is, for instance, the j-th lagrange interpolant associated to the interpolation nodes (x_i) = x_1,x_2,...,x_n.
Then, solving your Picard iterations is as simple as doing
phi_n+1 = f + K*phi_n
i.e.
for i = 1:N
phi = f + K*phi
end
where phi_n and f are the nodal values of phi and f on the (x_i).