Supervised neural network - neural-network

Wanted to ask the opinion of SO experts about the type of neural network I should use to teach it make yes/no answers on the combination of over fifty parameters. Essentially I have a valuation that may produce up to fifty different warnings or errors that are present in what’s being evaluated. So far I’ve been using mean average with coefficients to produce yes/no threshold, but wanted to learn more about applying it through supervised neural network, which I can feed different results and teach it to give final verdict. Which neural network I can use for such undertaking? There are quite a few there and as I’m entering the field of artificial learning, I wanted to which direction I should start looking to.
EDIT
What I'm starting to lean towards is employing some kind of back-propagation to adjust coefficients for each of the rule, where the decision of whether barcode data is correct or not will influence those coefficients. I'm pretty sure this can be achieved using a NN, but not exactly sure which one to use.

Related

neural network for sudoku solver

I recently started learning neural networks, and I thought that creating a sudoku solver would be a nice application for NN. I started learning them with backward propagation neural network, but later I figured that there are tens of neural networks. At this point, I find it hard to learn all of them and then pick an appropriate one for my purpose. Hence, I am asking what would be a good choice for creating this solver. Can back propagation NN work here? If not, can you explain why and tell me which one can work.
Thanks!
Neural networks don't really seem to be the best way to solve sudoku, as others have already pointed out. I think a better (but also not really good/efficient) way would be to use an genetic algorithm. Genetic algorithms don't directly relate to NNs but its very useful to know how they work.
Better (with better i mean more likely to be sussessful and probably better for you to learn something new) ideas would include:
If you use a library:
Play around with the networks, try to train them to different datasets, maybe random numbers and see what you get and how you have to tune the parameters to get better results.
Try to write an image generator. I wrote a few of them and they are stil my favourite projects, with one of them i used backprop to teach a NN what x/y coordinate of the image has which color, and the other aproach combines random generated images with ine another (GAN/NEAT).
Try to use create a movie (series of images) of the network learning to create a picture. It will show you very well how backprop works and what parameter tuning does to the results and how it changes how the network gets to the result.
If you are not using a library:
Try to solve easy problems, one after the other. Use backprop or a genetic algorithm for training (whatever you have implemented).
Try to improove your implementation and change some things that nobody else cares about and see how it changes the results.
List of 'tasks' for your Network:
XOR (basically the hello world of NN)
Pole balancing problem
Simple games like pong
More complex games like flappy bird, agar.io etc.
Choose more problems that you find interesting, maybe you are into image recognition, maybe text, audio, who knows. Think of something you can/would like to be able to do and find a way to make you computer do it for you.
It's not advisable to only use your own NN implemetation, since it will probably not work properly the first few times and you'll get frustratet. Experiment with librarys and your own implementation.
Good way to find almost endless resources:
Use google search and add 'filetype:pdf' in the end in order to only show pdf files. Search for neural network, genetic algorithm, evolutional neural network.
Neither neural nets not GAs are close to ideal solutions for Sudoku. I would advise to look into Constraint Programming (eg. the Choco or Gecode solver). See https://gist.github.com/marioosh/9188179 for example. Should solve any 9x9 sudoku in a matter of milliseconds (the daily Sudokus of "Le monde" journal are created using this type of technology BTW).
There is also a famous "Dancing links" algorithm for this problem by Knuth that works very well https://en.wikipedia.org/wiki/Dancing_Links
Just like was mentioned in the comments, you probably want to take a look at convolutional networks. You basically input the sudoku bord as an two dimensional 'image'. I think using a receptive field of 3x3 would be quite interesting, and I don't really think you need more than one filter.
The harder thing is normalization: the numbers 1-9 don't have an underlying relation in sudoku, you could easily replace them by A-I for example. So they are categories, not numbers. However, one-hot encoding every output would mean a lot of inputs, so i'd stick to numerical normalization (1=0.1, 2 = 0.2, etc.)
The output of your network should be a softmax with of some kind: if you don't use softmax, and instead outupt just an x and y coordinate, then you can't assure that the outputedd square has not been filled in yet.
A numerical value should be passed along with the output, to show what number the network wants to fill in.
As PLEXATIC mentionned, neural-nets aren't really well suited for these kind of task. Genetic algorithm sounds good indeed.
However, if you still want to stick with neural-nets you could have a look at https://github.com/Kyubyong/sudoku. As answered Thomas W, 3x3 looks nice.
If you don't want to deal with CNN, you could find some answers here as well. https://www.kaggle.com/dithyrambe/neural-nets-as-sudoku-solvers

Use a trained neural network to imitate its training data

I'm in the overtures of designing a prose imitation system. It will read a bunch of prose, then mimic it. It's mostly for fun so the mimicking prose doesn't need to make too much sense, but I'd like to make it as good as I can, with a minimal amount of effort.
My first idea is to use my example prose to train a classifying feed-forward neural network, which classifies its input as either part of the training data or not part. Then I'd like to somehow invert the neural network, finding new random inputs that also get classified by the trained network as being part of the training data. The obvious and stupid way of doing this is to randomly generate word lists and only output the ones that get classified above a certain threshold, but I think there is a better way, using the network itself to limit the search to certain regions of the input space. For example, maybe you could start with a random vector and do gradient descent optimisation to find a local maximum around the random starting point. Is there a word for this kind of imitation process? What are some of the known methods?
How about Generative Adversarial Networks (GAN, Goodfellow 2014) and their more advanced siblings like Deep Convolutional Generative Adversarial Networks? There are plenty of proper research articles out there, and also more gentle introductions like this one on DCGAN and this on GAN. To quote the latter:
GANs are an interesting idea that were first introduced in 2014 by a
group of researchers at the University of Montreal lead by Ian
Goodfellow (now at OpenAI). The main idea behind a GAN is to have two
competing neural network models. One takes noise as input and
generates samples (and so is called the generator). The other model
(called the discriminator) receives samples from both the generator
and the training data, and has to be able to distinguish between the
two sources. These two networks play a continuous game, where the
generator is learning to produce more and more realistic samples, and
the discriminator is learning to get better and better at
distinguishing generated data from real data. These two networks are
trained simultaneously, and the hope is that the competition will
drive the generated samples to be indistinguishable from real data.
(DC)GAN should fit your task quite well.

Determine function parameters with neural network

I am currently studying a doctoral thesis in control theory. At the end of every chapter there is a simulation of a relative-with-the-subject problem. I have finished the theory,but for further understanding I would like to reproduce the simulations. The first simulation is as follows :
The solution of the problem concludes in a system of differential equations whose right hand side consists of functions with unknown parameters. The author states the following : "We will use neural networks with one hidden layer,sigmoid basis functions and 5 weights in the external layer in order to approximate every parameter of the unknown functions.More specifically, the weights of the hidden layer are selected through iterative trials and are kept stable during the simulation." And then he states the logic with which he selects the initial values of the unknown parameters and then shows the results of the simulation.
Could anyone give me a lead on where to look and what I need to know in order to solve this specific problem myself in MATLAB (since this is the environment I am most familiar with)? Because the results of a google search are chaotic since I don't really know what I'm looking for.
If you need any more info,feel free to ask!
You can try MATLAB's Neural Network Toolbox. This gives you an nice UI where you can configure the network, train it with data to find the parameter values and test for performance. No coding involved.
Or, you can program it by hand. Since you are working with one hidden layer, it should be very simple. I am sure any machine learning or neural net (NN) textbook would have one example of it. You can also look into GitHib for projects. There should be many NN projects there, in case you are looking to salvage code from existing project.
Most importantly, you should start by learning about NN, if you haven't done that already. NN with single hidden layer is easy to implement once you understand the equations for the forward and back propagation.

Neural network for approximation function for board game

I am trying to make a neural network for approximation of some unkown function (for my neural network course). The problem is that this function has very many variables but many of them are not important (for example in [f(x,y,z) = x+y] z is not important). How could I design (and learn) network for this kind of problem?
To be more specific the function is an evaluation function for some board game with unkown rules and I need to somehow learn this rules by experience of the agent. After each move the score is given to the agent so actually it needs to find how to get max score.
I tried to pass the neighborhood of the agent to the network but there are too many variables which are not important for the score and agent is finding very local solutions.
If you have a sufficient amount of data, your ANN should be able to ignore the noisy inputs. You also may want to try other learning approaches like scaled conjugate gradient or simple heuristics like momentum or early stopping so your ANN isn't over learning the training data.
If you think there may be multiple, local solutions, and you think you can get enough training data, then you could try a "mixture of experts" approach. If you go with a mixture of experts, you should use ANNs that are too "small" to solve the entire problem to force it to use multiple experts.
So, you are given a set of states and actions and your target values are the score after the action is applied to the state? If this problem gets any hairier, it will sound like a reinforcement learning problem.
Does this game have discrete actions? Does it have a discrete state space? If so, maybe a decision tree would be worth trying?

Dual neural networks experiment (one logical, one emotional)?

Seeing that as as far as we know, one half of your brain is logical and the other half of your brain is emotional, and that the wants of the emotional side are fed to the logical side in order to fulfill those wants; has there been any research done in connecting two separate neural networks to one another (one trained to be emotional, and one trained to be logical) to see if it would result in almost a free-will sort of "brain"?
I don't really know anything about neural networks except that they were modeled after the biological synapses in the human brain, which is why I ask.
I'm not even sure if this would be possible considering that even a trained neural network sometimes doesn't act logically (a.k.a. do what you thought you trained it to do).
First, most modern neural networks aren't really modeled after biological synapses. They use an Artificial Neuron which allowed Back Propagation to work rather than a Perceptron which is a much more accurate representation.
When you feed the output of one network into the input of another network, you've really just created one larger network, not two separate networks. It just happens that in this case portions of the networks would be trained independently.
That said, all neural networks have to be trained. Which means you need sample input and sample output. You are looking to create a decision engine of sorts I suppose. So you would need to create a dataset where it makes sense that there might be an emotional and rational response, such as purchasing an item. You'd have to train the 'rational' network to accept as a set of inputs the output of an 'emotional' network. Which means you are really just training the rational decision engine to be responsive based on the leve of 'distress' caused by the emotional network.
Just my two cents.
I have also heard of one hemisphere being called "divergent" and one "convergent". This may not make any more sense than emotional vs logical, but it does hint at how you might model it more easily. I don't know how the brain achieves some of the impressive computational feats it does, but I wouldn't be very surprised if all revolved around balance, but maybe that is just one of the baises you have when you are a brain with two hemipheres (or any even number) :D
A balance between convergence and divergence is the crux of the creativity inherent in evolution. Replicating this with neural nets sounds promising to me. Suppose you make one learning system that generalizes and keeps representations of only the typical groups of patterns it is shown. Then you take another and make it generate all the in-betweens and mutants of the patterns it is shown. Then you feed them to eachother in a circle, and poof, you have made something really interesting!
It's even more complex than that, unbelievably. The left hemisphere works on a set of logical rules, it uses these to predict its environment and categorize input. It also infers rules and stores them for future use. The right hemisphere is based, as you said, on emotion, but also on memory of single, unique or emotionally relevant occurrences. A software implementation should also be able to retrieve and store these two data types and exchange "opinions" about them.
While the left hemisphere of the brain may be more involved in making emotional decisions, emotion itself is unlikely to occur exclusively in one side of the brain, and the interplay between emotions and rational thought within the brain is likely to be substantially more complex than having two completely separate circuits. For instance, a study on rhesus macaques found that dopamine and other hormones associated with emotional responses essentially implements temporal difference learning within the brain (I'm still looking for a link to it). This suggests that separating emotional and rational thought into two separate neural networks probably wouldn't be practical, even if we had the resources to build neural networks on the scale of brain hemispheres (which we don't, or at least not within most research budgets).
This idea is supported by Sloman and Croucher's suggestion that emotion will likely be an unavoidable emergent property of a sufficiently advanced intelligent system. Such systems (discussed in detail in the paper) will be much more complex than straight-up neural nets. More importantly, though, the emotions won't be something that you can localize to one part of the system.