I am running an experiment using Sugar (a SAT-based Constraint Solver) - sat

I am using Sugar (a SAT-based Constraint Solver) to run an experiment, for each new experiment I increase the size of the sugar file, which means that the percent of CPU and memory usage should increase. However, the CPU percentage is lower for larger files which don't make sense, can anyone help me to explain this behavior?
the specification of the Sugar and the server used t run the experiment is shown in the image.
machne specifications used in expirement

Related

When generate a network of 500 nodes, the behavior space went wrong and how can I solve it?

I use the NW extension to generate small-world networks and make an experiment in behaviour space to control the . In the experiment, I set ["nb-nodes" 50 100 500] (nb-nodes: the number of nodes).
Everything goes well until n = 500. CPU usage is too high, causing the program to become unresponsive.But when I set a single simulation with n = 500 in the interface, it keeps working. Only when I try to do it in the behaviour space, it goes wrong.
How can I solve it?
solution:
Thank for advice of Jasper and Steve Railsback, it helps a lot :)
In the FAQ (http://ccl.northwestern.edu/netlogo/docs/faq.html#how-big-can-my-model-be-how-many-turtles-patches-procedures-buttons-and-so-on-can-my-model-contain) it says:
"If you are using BehaviorSpace, note that doing runs in parallel will multiply your RAM usage accordingly"
So I just reduce the parallel from 16 to 8, I know it will slow down the program, but at the same time it will also reduce RAM usage and it works.
Of course, change RAM is another way and it can fit higher calculating demand.
I agree that you should start with increasing NetLogo's memory allocation as directed in the FAQ that Jasper referred you to. (At least in Windows, you must edit the NetLogo.cfg file using administrator privileges.) You can start by doubling or quadrupling the allocation, but the only real limitation is how much RAM you have on your machine.
We keep notes and a publication on NetLogo performance issues here:
http://www.railsback-grimm-abm-book.com/jasss-models/

Define the minimal configuration for a program

So I have my .exe ready to deploy, and for distribution, I need to know the minimal requirements for my program to run on a machine... and I really don't know how to do that.
Is there a way to know that ? Some kind of benchmark ? Or must I just set things as I think it'll work ?
Maybe should I just buy all existing components until I find the minimal ? :')
Well, thanks for your answers.
Start by seeing the first Windows' version you can deploy on (Windows XP? Vista?).
If your program is cpu or gpu intensive, and has a fixed time loop (eg. game) then you'll have to do benchmarks.
You should look at several old vs new CPUs/GPUs and trying to "guess" based on online specs posted online what the minimal requirement is. For example, if your program can't run on an old cpu, but runs blazingly fast on a new one, try to find the model that -barely- runs it, which will obviously be one somewhere in the middle.
If your program requires other special things, specify them (eg. USB 3.0, controllers supported...).
Otherwise, if your program loads slower but doesn't have runtime issues, the minimum specs should be indicative of a reasonable loading time (a minute seems to be the standard now, sadly).
Additionally, if your program is memory hungry (both hard drive or RAM), you must indicate this.
For hard drive memory, simply state your program size, along with the files included with it.
For RAM, use a profiler - it will tell you how much memory your program is using.
I've completely skipped over the fact that, in some computers, the bottleneck might be the cpu, and it might be the gpu in others. You need to know which is the bottleneck to make your judgement.
To find out is a rather simple process - remove expensive gpu operations (lower texture resolutions, turn off shaders). If the program still runs slowly, then the bottleneck is the cpu.
edit: this is a simplification of the problem and hardware is a little more complicated than this (slower multi-core cpus vs faster one-core cpus vary their performance depending on how many cores a program uses and how / a program may require a gpu to have less memory but more processing power, or the opposite... even heat dissipation can affect component efficiency: your program might run fine for 20 minutes but start to slow down if the cpu isn't cooled down properly), but "minimal hardware requirements" aren't exactly precise so this method is appropriate.
tl;dr of the spoiler:
In short, there are so many factors that affect performance that you can't measure it, so just a rough estimation is good.

Virtual Memory Page Replacement Algorithms

I have a project where I am asked to develop an application to simulate how different page replacement algorithms perform (with varying working set size and stability period). My results:
Vertical axis: page faults
Horizontal axis: working set size
Depth axis: stable period
Are my results reasonable? I expected LRU to have better results than FIFO. Here, they are approximately the same.
For random, stability period and working set size doesnt seem to affect the performance at all? I expected similar graphs as FIFO & LRU just worst performance? If the reference string is highly stable (little branches) and have a small working set size, it should still have less page faults that an application with many branches and big working set size?
More Info
My Python Code | The Project Question
Length of reference string (RS): 200,000
Size of virtual memory (P): 1000
Size of main memory (F): 100
number of time page referenced (m): 100
Size of working set (e): 2 - 100
Stability (t): 0 - 1
Working set size (e) & stable period (t) affects how reference string are generated.
|-----------|--------|------------------------------------|
0 p p+e P-1
So assume the above the the virtual memory of size P. To generate reference strings, the following algorithm is used:
Repeat until reference string generated
pick m numbers in [p, p+e]. m simulates or refers to number of times page is referenced
pick random number, 0 <= r < 1
if r < t
generate new p
else (++p)%P
UPDATE (In response to #MrGomez's answer)
However, recall how you seeded your input data: using random.random,
thus giving you a uniform distribution of data with your controllable
level of entropy. Because of this, all values are equally likely to
occur, and because you've constructed this in floating point space,
recurrences are highly improbable.
I am using random, but it is not totally random either, references are generated with some locality though the use of working set size and number page referenced parameters?
I tried increasing the numPageReferenced relative with numFrames in hope that it will reference a page currently in memory more, thus showing the performance benefit of LRU over FIFO, but that didn't give me a clear result tho. Just FYI, I tried the same app with the following parameters (Pages/Frames ratio is still kept the same, I reduced the size of data to make things faster).
--numReferences 1000 --numPages 100 --numFrames 10 --numPageReferenced 20
The result is
Still not such a big difference. Am I right to say if I increase numPageReferenced relative to numFrames, LRU should have a better performance as it is referencing pages in memory more? Or perhaps I am mis-understanding something?
For random, I am thinking along the lines of:
Suppose theres high stability and small working set. It means that the pages referenced are very likely to be in memory. So the need for the page replacement algorithm to run is lower?
Hmm maybe I got to think about this more :)
UPDATE: Trashing less obvious on lower stablity
Here, I am trying to show the trashing as working set size exceeds the number of frames (100) in memory. However, notice thrashing appears less obvious with lower stability (high t), why might that be? Is the explanation that as stability becomes low, page faults approaches maximum thus it does not matter as much what the working set size is?
These results are reasonable given your current implementation. The rationale behind that, however, bears some discussion.
When considering algorithms in general, it's most important to consider the properties of the algorithms currently under inspection. Specifically, note their corner cases and best and worst case conditions. You're probably already familiar with this terse method of evaluation, so this is mostly for the benefit of those reading here whom may not have an algorithmic background.
Let's break your question down by algorithm and explore their component properties in context:
FIFO shows an increase in page faults as the size of your working set (length axis) increases.
This is correct behavior, consistent with Bélády's anomaly for FIFO replacement. As the size of your working page set increases, the number of page faults should also increase.
FIFO shows an increase in page faults as system stability (1 - depth axis) decreases.
Noting your algorithm for seeding stability (if random.random() < stability), your results become less stable as stability (S) approaches 1. As you sharply increase the entropy in your data, the number of page faults, too, sharply increases and propagates the Bélády's anomaly.
So far, so good.
LRU shows consistency with FIFO. Why?
Note your seeding algorithm. Standard LRU is most optimal when you have paging requests that are structured to smaller operational frames. For ordered, predictable lookups, it improves upon FIFO by aging off results that no longer exist in the current execution frame, which is a very useful property for staged execution and encapsulated, modal operation. Again, so far, so good.
However, recall how you seeded your input data: using random.random, thus giving you a uniform distribution of data with your controllable level of entropy. Because of this, all values are equally likely to occur, and because you've constructed this in floating point space, recurrences are highly improbable.
As a result, your LRU is perceiving each element to occur a small number of times, then to be completely discarded when the next value was calculated. It thus correctly pages each value as it falls out of the window, giving you performance exactly comparable to FIFO. If your system properly accounted for recurrence or a compressed character space, you would see markedly different results.
For random, stability period and working set size doesn't seem to affect the performance at all. Why are we seeing this scribble all over the graph instead of giving us a relatively smooth manifold?
In the case of a random paging scheme, you age off each entry stochastically. Purportedly, this should give us some form of a manifold bound to the entropy and size of our working set... right?
Or should it? For each set of entries, you randomly assign a subset to page out as a function of time. This should give relatively even paging performance, regardless of stability and regardless of your working set, as long as your access profile is again uniformly random.
So, based on the conditions you are checking, this is entirely correct behavior consistent with what we'd expect. You get an even paging performance that doesn't degrade with other factors (but, conversely, isn't improved by them) that's suitable for high load, efficient operation. Not bad, just not what you might intuitively expect.
So, in a nutshell, that's the breakdown as your project is currently implemented.
As an exercise in further exploring the properties of these algorithms in the context of different dispositions and distributions of input data, I highly recommend digging into scipy.stats to see what, for example, a Gaussian or logistic distribution might do to each graph. Then, I would come back to the documented expectations of each algorithm and draft cases where each is uniquely most and least appropriate.
All in all, I think your teacher will be proud. :)

CUDA: Reasons for using preprocessing variables to specify the problem size

I'm coding CUDA in Matlab mex-Files. When you look at CUDA examples on the internet or even manuals from nvidia, you often see the use of preprocessing variables to specify the problem size, e.g. the vector length for a vector addition or something like this. I coded my program also like this: Preprocessing Variables for specifying the problem size. And I have to admit it: I like it since you can access those everywhere in your code, e.g. as limits in a loop or something like this, without having to explicitly pass them via argument to the function.
But I ran into the following problem: I wanted to bench the program for several different problem sizes and thus I need to compile the code everytime again by passing the preprocessing-variable to the compiler. It's not a problem, I already coded the benchmark and it works. But I just wonder afterwards now, why I chose this version and did not simply specify it by a user input on runtime. And thus I'm looking for reasons one might want to use preprocessing variables instead of simply passing the problem size to the program.
Thanks!
When you compile-in problem-size constants in the kernel, then the compiler can make certain classes of optimizations that it can't if the sizes are only known at runtime. Full loop unrolling is an obvious example.
In other cases, for instance shared memory array sizes, it is a lot clearer if the sizes are compiled-in; otherwise you have to pass in the total shared memory size at kernel launch time and break that memory up into the number of shared arrays you need. That works fine, but the code is much clearer if you can just have static declarations, for which you need the compile-time sizes.
The main reason is that in general the problem size will be intimately linked to the GPU architecture, e.g. number of threads per block, number of blocks, amount of shared memory per thread, number of registers per thread, etc. In general these numbers are all carefully hand tuned to get the maximum usage of available resources and you can't easily change the problem size dynamically while still maintaining optimum performance.

Is Scala doing anything in parallel on its own?

I have little program creating a maze. It uses lots of collections (the default variant, which is immutable, or at least used as an immutable).
The program calculates 30 mazes with increasing dimensions. Using a for comprehension over (1 to 30)
Since with the latest versions the parallel collections framework became available I thought to give it a spin, hoping for some performance gain.
This failed and when I investigated a little, I found the following:
When run without any call to anything remotely parallel it still showed a processor load of about 30% on each of the 4 cores of my machine.
When I replaced the Range 1 to 30 with (1 to 30).par CPU load went up to about 80% on all cores (which I expected). The order in which the mazes completed became more or less random (which I expected). The total time for all mazes stayed the same.
Replacing some of the internally used collections with their parallel counter parts did seem to have an effect.
I now have 2 questions:
Why do I have all 4 cores spinning, although there isn't anything that runs in parallel.
What might be likely reasons for the program to still take the same time, no matter if running in parallel or not. There are no obvious other bottlenecks but CPU cycles (no IO, no Network, plenty of Memory via -Xmx setting)
Any ideas on this?
The 30% per core version is just a poor scheduler (sounds like Windows 7) migrating the process from core to core very frequently. It's probably closer to 25% per core (1/4) for your process plus misc other load making 30%. If you run the same example under Linux you would probably see one core pegged.
When you converted to (1 to 30).par, you started really using threads across all cores but the synchronization overhead of distributing such a small amount of work and then collecting the results cancelled out the parallelism gains. You need to break your work into larger independent chunks.
EDIT: If each of 1..30 represents some larger amount of work (solving a maze, say) then automatic parallelization will work much better if each unit of work is about the same. Imagine you had 29 easy mazes and one very very hard maze. The 30th maze will still run serially (or very nearly) with everything else). If your mazes increase in complexity by number try spawning them in the order 30 to 1 by -1 so that the biggest tasks will go first. Think of it as a braindead solution to the knapsack problem.