Update June 20, 2019: Thanks to #rudedog, I arrived at a working solution. I've appended implementation below my original post...
Note that I am NOT looking for "use private enum CodingKeys: String, CodingKey" in your struct/enum declaration.
I have a situation in which a service I call requires upper snake_case (UPPER_SNAKE_CASE) for all enumerations.
Given the following struct:
public struct Request: Encodable {
public let foo: Bool?
public let barId: BarIdType
public enum BarIdType: String, Encodable {
case test
case testGroup
}
}
All enums in any request should be converted to UPPER_SNAKE_CASE.
For example, let request = Request(foo: true, barId: testGroup) should end up looking like the following when sent:
{
"foo": true,
"barId": "TEST_GROUP"
}
I would like to provide a custom JSONEncoder.KeyEncodingStrategy that would ONLY apply to enum types.
Creating a custom strategy seems straightforward, at least according to Apple's JSONEncoder.KeyEncodingStrategy.custom(_:) documentation.
Here's what I have so far:
public struct AnyCodingKey : CodingKey {
public var stringValue: String
public var intValue: Int?
public init(_ base: CodingKey) {
self.init(stringValue: base.stringValue, intValue: base.intValue)
}
public init(stringValue: String) {
self.stringValue = stringValue
}
public init(intValue: Int) {
self.stringValue = "\(intValue)"
self.intValue = intValue
}
public init(stringValue: String, intValue: Int?) {
self.stringValue = stringValue
self.intValue = intValue
}
}
extension JSONEncoder.KeyEncodingStrategy {
static var convertToUpperSnakeCase: JSONEncoder.KeyEncodingStrategy {
return .custom { keys in // codingKeys is [CodingKey]
// keys = Enum ???
var key = AnyCodingKey(keys.last!)
// key = Enum ???
key.stringValue = key.stringValue.toUpperSnakeCase // toUpperSnakeCase is a String extension
return key
}
}
}
I'm stuck trying to determine whether [CodingKey] represents an enum, or whether the individual CodingKey represents an enum, and should therefor become UPPER_SNAKE_CASE.
I know this sounds pointless, since I can simply supply hardcoded CodingKeys, but we have a lot of service calls, all requiring the same handling of enum cases. It would be simpler to just specify a custom KeyEncodingStrategy for the encoder.
What would be ideal is to apply JSONEncoder.KeyEncodingStrategy.convertToSnakeCase in the custom strategy and then just return the uppercased value. But again, only if the value represents an enum case.
Any thoughts?
Here is the code I arrived at that solved my problem, with help from #rudedog:
import Foundation
public protocol UpperSnakeCaseRepresentable: Encodable {
var upperSnakeCaseValue: String { get }
}
extension UpperSnakeCaseRepresentable where Self: RawRepresentable, Self.RawValue == String {
var upperSnakeCaseValue: String {
return _upperSnakeCaseValue(rawValue)
}
}
extension KeyedEncodingContainer {
mutating func encode(_ value: UpperSnakeCaseRepresentable, forKey key: KeyedEncodingContainer<K>.Key) throws {
try encode(value.upperSnakeCaseValue, forKey: key)
}
}
// The following is copied verbatim from https://github.com/apple/swift/blob/master/stdlib/public/Darwin/Foundation/JSONEncoder.swift
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
// The only change is to call uppercased() on the encoded value as part of the return.
fileprivate func _upperSnakeCaseValue(_ stringKey: String) -> String {
guard !stringKey.isEmpty else { return stringKey }
var words : [Range<String.Index>] = []
// The general idea of this algorithm is to split words on transition from lower to upper case, then on transition of >1 upper case characters to lowercase
//
// myProperty -> my_property
// myURLProperty -> my_url_property
//
// We assume, per Swift naming conventions, that the first character of the key is lowercase.
var wordStart = stringKey.startIndex
var searchRange = stringKey.index(after: wordStart)..<stringKey.endIndex
// Find next uppercase character
while let upperCaseRange = stringKey.rangeOfCharacter(from: CharacterSet.uppercaseLetters, options: [], range: searchRange) {
let untilUpperCase = wordStart..<upperCaseRange.lowerBound
words.append(untilUpperCase)
// Find next lowercase character
searchRange = upperCaseRange.lowerBound..<searchRange.upperBound
guard let lowerCaseRange = stringKey.rangeOfCharacter(from: CharacterSet.lowercaseLetters, options: [], range: searchRange) else {
// There are no more lower case letters. Just end here.
wordStart = searchRange.lowerBound
break
}
// Is the next lowercase letter more than 1 after the uppercase? If so, we encountered a group of uppercase letters that we should treat as its own word
let nextCharacterAfterCapital = stringKey.index(after: upperCaseRange.lowerBound)
if lowerCaseRange.lowerBound == nextCharacterAfterCapital {
// The next character after capital is a lower case character and therefore not a word boundary.
// Continue searching for the next upper case for the boundary.
wordStart = upperCaseRange.lowerBound
} else {
// There was a range of >1 capital letters. Turn those into a word, stopping at the capital before the lower case character.
let beforeLowerIndex = stringKey.index(before: lowerCaseRange.lowerBound)
words.append(upperCaseRange.lowerBound..<beforeLowerIndex)
// Next word starts at the capital before the lowercase we just found
wordStart = beforeLowerIndex
}
searchRange = lowerCaseRange.upperBound..<searchRange.upperBound
}
words.append(wordStart..<searchRange.upperBound)
let result = words.map({ (range) in
return stringKey[range].lowercased()
}).joined(separator: "_")
return result.uppercased()
}
enum Snake: String, UpperSnakeCaseRepresentable, Encodable {
case blackAdder
case mamba
}
struct Test: Encodable {
let testKey: String?
let snake: Snake
}
let test = Test(testKey: "testValue", snake: .mamba)
let enumData = try! JSONEncoder().encode(test)
let json = String(data: enumData, encoding: .utf8)!
print(json)
I think you are actually looking for a value encoding strategy? A key encoding strategy changes how keys are encoded, not how their values are encoded. A value encoding strategy would be something like JSONDecoder's dateDecodingStrategy, and you're looking for one for enums.
This is an approach that might work for you:
protocol UpperSnakeCaseRepresentable {
var upperSnakeCaseValue: String { get }
}
extension UpperSnakeCaseRepresentable where Self: RawRepresentable, RawValue == String {
var upperSnakeCaseValue: String {
// Correct implementation left as an exercise
return rawValue.uppercased()
}
}
extension KeyedEncodingContainer {
mutating func encode(_ value: UpperSnakeCaseRepresentable, forKey key: KeyedEncodingContainer<K>.Key) throws {
try encode(value.upperSnakeCaseValue, forKey: key)
}
}
enum Snake: String, UpperSnakeCaseRepresentable, Encodable {
case blackAdder
case mamba
}
struct Test: Encodable {
let snake: Snake
}
let test = Test(snake: .blackAdder)
let data = try! JSONEncoder().encode(test)
let json = String(data: data, encoding: .utf8)!
print(json)
Now, any enums that you declare as conforming to UpperSnakeCaseRepresentable will be encoded as you want.
You can extend the other encoding and decoding containers the same way.
Related
I have a structure that some of the values will get Integer or string so I used this structure in my structure to parse JSON in the correct way but the problem is that when I want to print the value it will print string("1") instead of 1.
public struct player1_result_sheet : Decodable {
let ans_1 : QuantumValue?
let ans_2 : QuantumValue?
let ans_3 : QuantumValue?
let ans_4 : QuantumValue?
}
enum QuantumValue: Decodable {
case int(Int), string(String)
init(from decoder: Decoder) throws {
if let int = try? decoder.singleValueContainer().decode(Int.self) {
self = .int(int)
return
}
if let string = try? decoder.singleValueContainer().decode(String.self) {
self = .string(string)
return
}
throw QuantumError.missingValue
}
enum QuantumError:Error {
case missingValue
}
}
Here is the printing after decode:
(self.res?.response?.detailData?[indexPath.row].player1_result_sheet?.ans_1!)!
If you want to print the value without the enum wrapper, just implement description:
extension QuantumValue: CustomStringConvertible {
public var description: String {
switch self {
case let .string(string):
return string
case let .int(number):
return "\(number)"
}
}
}
Your enum case is string(String) so it prints case(value)
string("1")
You can solve it by creating varible inside enum which returns you a value depends on case of QuantumValue
var value: Any {
switch self {
case .int(let value):
return value
case .string(let value):
return value
}
}
then you can use it like this:
...ans_1!.value)!
1
Also note that type of value is Any so if you want to work with it as String, you have to downcast it
if let string = ...ans_1.value)! as? String {
...
}
QuantumValue is declared as enum, both good cases have associated values.
So printing a value prints both, the case and the associated value.
You could add two properties intValue and stringValue inside QuantumValue
var intValue : Int? {
guard case .int(let num) = self else { return nil }
return num
}
var stringValue : String? {
guard case .string(let string) = self else { return nil }
return string
}
Then you can print
player1_result_sheet?.ans_1?.intValue
By the way the name player1_result_sheet is pretty php-ish.
Please conform to the naming convention.
Structs, classes and enums are UpperCamelCased → Player1ResultSheet
Variables and functions are lowerCamelCased → ans1
And please consolidate your optionals, 6 (six) question and exclamation marks in one line is pretty weird
(self.res?.response?.detailData?[indexPath.row].player1_result_sheet?.ans_1!)!
Our json-over-rest(ish) API follows a pattern of encoding URLs accessible from a particular object in a list format, under the #links key. Made-up example:
{ "id": "whatever",
"height_at_birth": 38,
"#links": [
{ "name": "shield-activation-level",
"url": "https://example.com/some/other/path" },
{ "name": "register-genre-preference",
"url": "https://example.com/some/path" }
]
}
On the Swift side we use phantom types and optionality for type-safety. For instance the above json might correspond to a struct like:
struct Baby {
let id: String
let heightAtBirth: Int
let registerGenrePreference: Link<POST<GenrePreference>>
let shieldActivationLevel: Link<GET<PowerLevel>>?
let magicPowers: Link<GET<[MagicPower]>>?
}
The phantom types ensure that we can't post a feeding schedule to the registerGenrePreference URL by accident, and the optionality indicates that a well-formed Baby-json will always contain an #links entry for registerGenrePreference but that the other two links might or might not be present. So far so good.
I would like to use Decodable to consume this json format, ideally with a minimum of init(decoder:Decoder) custom implementations. But I am stumped by the #links entries.
I think I see what this would look like if I do the entire decoding by hand:
get the baby's container,
from it get a nested unkeyed container for the #links key
iterate over its values (which should be [String:String] dicts) and build a dict matching names to URLs
for each link Baby expects, look it up in the dict (and throw if the property was non-optional and the link is missing)
But steps 2 and 3 are the same for every class following this pattern (not ideal) and even worse, having to do this also prevents me from using the compiler-provided Decodable implementation so I also have to manually decode all the other properties of Baby.
If it helps I'm perfectly happy restructuring Baby; one obvious step that might help would be:
struct Baby {
let id: String
let heightAtBirth: Int
let links: Links
struct Links {
let registerGenrePreference: Link<POST<GenrePreference>>
let shieldActivationLevel: Link<GET<PowerLevel>>?
let magicPowers: Link<GET<[MagicPower]>>?
}
}
And of course I expect we'll have to add coding keys, even if only for the snake/camel-case conversion and the #:
enum CodingKeys: String, CodingKey {
case id
case heightAtBirth = "height_at_birth"
case links = "#links"
}
I could probably make a manual Decodable conformance for Baby.Links, following the pattern above, but that still will mean repeating the "get the unkeyed collection, transform it to a dict, look up coding-keys in the dict" steps once for each class following this pattern.
Is there a way to centralise this logic?
You actually have a well defined structure for your links. They are a dictionary [String : String] so you can use that to your advantage in using Decodable.
You may want to consider setting up your structs like below. The links are decoded from the JSON, and an extension provides your optionality of the exact links you are looking for.
A Linkable protocol could be used to add the conformance to any class/struct that needs it.
import Foundation
struct Link: Decodable {
let name: String
let url: String
}
protocol Linkable {
var links: [Link] { get }
}
extension Linkable {
func url(forName name: String) -> URL? {
guard let path = links.first(where: { $0.name == name })?.url else {
return nil
}
return URL(string: path)
}
}
struct Baby: Decodable, Linkable {
let id: String
let heightAtBirth: Int
let links: [Link]
enum CodingKeys: String, CodingKey {
case id = "id"
case heightAtBirth = "height_at_birth"
case links = "#links"
}
static func makeBaby(json: String) throws -> Baby {
guard let data = json.data(using: .utf8) else {
throw CocoaError.error(.fileReadUnknown)
}
return try JSONDecoder().decode(Baby.self, from: data)
}
}
extension Baby {
var registerGenrePreference: URL? {
return url(forName: "register-genre-preference")
}
var shieldActivationLevel: URL? {
return url(forName: "shield-activation-level")
}
}
let baby = try Baby.makeBaby(json: json)
baby.registerGenrePreference
baby.shieldActivationLevel
The following pattern gives me complete type-safety, and most of the implementation lives in the one-off utility class UntypedLinks. Each model class needs to define a nested class Links with a custom decode(from: Decoder), but the implementation of those is completely boilerplate (probably can be automated with simple code-generation tooling) and reasonably readable.
public struct Baby: Decodable {
public let id: String
public let heightAtBirth: Int
public let links: Links
enum CodingKeys: String, CodingKey {
case id
case heightAtBirth = "height_at_birth"
case links = "#links"
}
public struct Links: Decodable {
let registerGenrePreference: Link<POST<GenrePreference>>
let shieldActivationLevel: Link<GET<PowerLevel>>?
let magicPowers: Link<GET<[MagicPower]>>?
enum CodingKeys: String, CodingKey {
case registerGenrePreference = "register-genre-preference"
case shieldActivationLevel = "shield-activation-level"
case magicPowers = "magic-powers"
}
public init(from decoder: Decoder) throws {
let links = try UntypedLinks<CodingKeys>(from: decoder)
registerGenrePreference = try links.required(.registerGenrePreference)
shieldActivationLevel = links.optional(.shieldActivationLevel)
magicPowers = links.optional(.magicPowers)
}
}
}
public class UntypedLinks<CodingKeys> where CodingKeys: CodingKey {
let links: [String: String]
let codingPath: [CodingKey]
class UntypedLink: Codable {
let name: String
let url: String
}
public init(from decoder: Decoder) throws {
var container = try decoder.unkeyedContainer()
var links: [String: String] = [:]
while !container.isAtEnd {
let link = try container.decode(UntypedLink.self)
links[link.name] = link.url
}
self.links = links
self.codingPath = container.codingPath
}
func optional<Phantom>(_ name: CodingKeys) -> Link<Phantom>? {
return links[name.stringValue].map(Link.init)
}
func required<Phantom>(_ name: CodingKeys) throws -> Link<Phantom> {
guard let link: Link<Phantom> = optional(name) else {
throw DecodingError.keyNotFound(
name,
DecodingError.Context(
codingPath: codingPath,
debugDescription: "Link not found")
)
}
return link
}
}
Given a Dictionary whose Key is of type String, is there a way to access the value in a case-insensitive manner? For example:
let dict = [
"name": "John",
"location": "Chicago"
]
Is there a way to call dict["NAME"], dict["nAmE"], etc. and stil get "John"?
A cleaner approach, swift 4:
extension Dictionary where Key == String {
subscript(caseInsensitive key: Key) -> Value? {
get {
if let k = keys.first(where: { $0.caseInsensitiveCompare(key) == .orderedSame }) {
return self[k]
}
return nil
}
set {
if let k = keys.first(where: { $0.caseInsensitiveCompare(key) == .orderedSame }) {
self[k] = newValue
} else {
self[key] = newValue
}
}
}
}
// Usage:
var dict = ["name": "John"]
dict[caseInsensitive: "NAME"] = "David" // overwrites "name" value
print(dict[caseInsensitive: "name"]!) // outputs "David"
Swift support multiple subscripting so you can take advantage of that to define a case-insensitve accessor:
extension Dictionary where Key : StringLiteralConvertible {
subscript(ci key : Key) -> Value? {
get {
let searchKey = String(key).lowercaseString
for k in self.keys {
let lowerK = String(k).lowercaseString
if searchKey == lowerK {
return self[k]
}
}
return nil
}
}
}
// Usage:
let dict = [
"name": "John",
"location": "Chicago",
]
print(dict[ci: "NAME"]) // John
print(dict[ci: "lOcAtIoN"]) // Chicago
This extension is limited to Dictionary whose Key is of type String (as lowercase is meaningless with other data types). However, Swift will complain about constraining a generic type to a struct. The protocol that is closest to String is StringLiteralConvertible.
Note that if you have 2 keys whose lowercase forms are identical, there's no guarantee which one you will get back:
let dict = [
"name": "John",
"NAME": "David",
]
print(dict[ci: "name"]) // no guarantee that you will get David or John.
The existing answers are fine, but the time complexity of lookups/insertions with those strategies deteriorates from O(1) to O(N) (where N is the number of objects in the dictionary).
To retain O(1) you may want to consider the following approach:
/// Wrapper around String which uses case-insensitive implementations for Hashable
public struct CaseInsensitiveString: Hashable, LosslessStringConvertible, ExpressibleByStringLiteral {
public typealias StringLiteralType = String
private let value: String
private let caseInsensitiveValue: String
public init(stringLiteral: String) {
self.value = stringLiteral
self.caseInsensitiveValue = stringLiteral.lowercased()
}
public init?(_ description: String) {
self.init(stringLiteral: description)
}
public var hashValue: Int {
return self.caseInsensitiveValue.hashValue
}
public static func == (lhs: CaseInsensitiveString, rhs: CaseInsensitiveString) -> Bool {
return lhs.caseInsensitiveValue == rhs.caseInsensitiveValue
}
public var description: String {
return value
}
}
var dict = [CaseInsensitiveString: String]()
dict["name"] = "John"
dict["NAME"] = "David" // overwrites "name" value
print(dict["name"]!) // outputs "David"
can use Collection's first(where:) to find first lowercased match from all keys mapped lowercased, then return the value from this result.
extension Dictionary where Key == String {
func valueForKeyInsensitive<T>(key: Key) -> T? {
let foundKey = self.keys.first { $0.compare(key, options: .caseInsensitive) == .orderedSame } ?? key
return self[foundKey] as? T
}
}
first(where:) is a much efficient way to filter or iterate over the large collection
reference:
https://developer.apple.com/documentation/swift/anybidirectionalcollection/2906322-first#
https://github.com/realm/SwiftLint/blob/master/Rules.md#first-where
This should do the job with O(1) while also not allowing to add the same string with different casing (e.g. if you first insert Def it is not replaced by DEF). It also works for Substring if necessary. Note, that this solution is more memory effective, but comes at the cost at recomputing the string transformation and hash on every lookup of a string. If you need to look-up the same value frequently it might be worth to have an implementation which caches the hashValue.
struct CaseInsensitiveString<T: StringProtocol>: Hashable, Equatable, CustomStringConvertible {
var string: T
init(_ string: T) {
self.string = string
}
var description: String { get {
return string.description
}}
var hashValue: Int { get {
string.lowercased().hashValue
} }
func hash(into hasher: inout Hasher) {
hasher.combine(hashValue)
}
static func == (lhs: Self, rhs: Self) -> Bool {
return lhs.string.compare(rhs.string, options: .caseInsensitive) == .orderedSame
}
}
typealias SubstringCI = CaseInsensitiveString<String>
var codeMap = [SubstringCI: Int]()
let test = "Abc Def Ghi"
let testsub = test[test.firstIndex(of: "D")!...test.lastIndex(of: "f")!]
codeMap[SubstringCI(String(testsub))] = 1
print(codeMap.keys, codeMap[SubstringCI("Def")]!, codeMap[SubstringCI("def")]!)
codeMap[SubstringCI("DEF")] = 1
print(codeMap.keys, codeMap[SubstringCI("Def")]!, codeMap[SubstringCI("def")]!)
In Swift it's not possible use .setValue(..., forKey: ...)
nullable type fields like Int?
properties that have an enum as it's type
an Array of nullable objects like [MyObject?]
There is one workaround for this and that is by overriding the setValue forUndefinedKey method in the object itself.
Since I'm writing a general object mapper based on reflection. See EVReflection I would like to minimize this kind of manual mapping as much as possible.
Is there an other way to set those properties automatically?
The workaround can be found in a unit test in my library here
This is the code:
class WorkaroundsTests: XCTestCase {
func testWorkarounds() {
let json:String = "{\"nullableType\": 1,\"status\": 0, \"list\": [ {\"nullableType\": 2}, {\"nullableType\": 3}] }"
let status = Testobject(json: json)
XCTAssertTrue(status.nullableType == 1, "the nullableType should be 1")
XCTAssertTrue(status.status == .NotOK, "the status should be NotOK")
XCTAssertTrue(status.list.count == 2, "the list should have 2 items")
if status.list.count == 2 {
XCTAssertTrue(status.list[0]?.nullableType == 2, "the first item in the list should have nullableType 2")
XCTAssertTrue(status.list[1]?.nullableType == 3, "the second item in the list should have nullableType 3")
}
}
}
class Testobject: EVObject {
enum StatusType: Int {
case NotOK = 0
case OK
}
var nullableType: Int?
var status: StatusType = .OK
var list: [Testobject?] = []
override func setValue(value: AnyObject!, forUndefinedKey key: String) {
switch key {
case "nullableType":
nullableType = value as? Int
case "status":
if let rawValue = value as? Int {
status = StatusType(rawValue: rawValue)!
}
case "list":
if let list = value as? NSArray {
self.list = []
for item in list {
self.list.append(item as? Testobject)
}
}
default:
NSLog("---> setValue for key '\(key)' should be handled.")
}
}
}
I found a way around this when I was looking to solve a similar problem - that KVO can't set the value of a pure Swift protocol field. The protocol has to be marked #objc, which caused too much pain in my code base.
The workaround is to look up the Ivar using the objective C runtime, get the field offset, and set the value using a pointer.
This code works in a playground in Swift 2.2:
import Foundation
class MyClass
{
var myInt: Int?
}
let instance = MyClass()
// Look up the ivar, and it's offset
let ivar: Ivar = class_getInstanceVariable(instance.dynamicType, "myInt")
let fieldOffset = ivar_getOffset(ivar)
// Pointer arithmetic to get a pointer to the field
let pointerToInstance = unsafeAddressOf(instance)
let pointerToField = UnsafeMutablePointer<Int?>(pointerToInstance + fieldOffset)
// Set the value using the pointer
pointerToField.memory = 42
assert(instance.myInt == 42)
Notes:
This is probably pretty fragile, you really shouldn't use this.
But maybe it could live in a thoroughly tested and updated reflection library until Swift gets a proper reflection API.
It's not that far away from what Mirror does internally, see the code in Reflection.mm, around here: https://github.com/apple/swift/blob/swift-2.2-branch/stdlib/public/runtime/Reflection.mm#L719
The same technique applies to the other types that KVO rejects, but you need to be careful to use the right UnsafeMutablePointer type. Particularly with protocol vars, which are 40 or 16 bytes, unlike a simple class optional which is 8 bytes (64 bit). See Mike Ash on the topic of Swift memory layout: https://mikeash.com/pyblog/friday-qa-2014-08-01-exploring-swift-memory-layout-part-ii.html
Edit: There is now a framework called Runtime at https://github.com/wickwirew/Runtime which provides a pure Swift model of the Swift 4+ memory layout, allowing it to safely calculate the equivalent of ivar_getOffset without invoking the Obj C runtime. This allows setting properties like this:
let info = try typeInfo(of: User.self)
let property = try info.property(named: "username")
try property.set(value: "newUsername", on: &user)
This is probably a good way forward until the equivalent capability becomes part of Swift itself.
Swift 5
To set and get properties values with pure swift types you can use internal ReflectionMirror.swift approach with shared functions:
swift_reflectionMirror_recursiveCount
swift_reflectionMirror_recursiveChildMetadata
swift_reflectionMirror_recursiveChildOffset
The idea is to gain info about an each property of an object and then set a value to a needed one by its pointer offset.
There is example code with KeyValueCoding protocol for Swift that implements setValue(_ value: Any?, forKey key: String) method:
typealias NameFreeFunc = #convention(c) (UnsafePointer<CChar>?) -> Void
struct FieldReflectionMetadata {
let name: UnsafePointer<CChar>? = nil
let freeFunc: NameFreeFunc? = nil
let isStrong: Bool = false
let isVar: Bool = false
}
#_silgen_name("swift_reflectionMirror_recursiveCount")
fileprivate func swift_reflectionMirror_recursiveCount(_: Any.Type) -> Int
#_silgen_name("swift_reflectionMirror_recursiveChildMetadata")
fileprivate func swift_reflectionMirror_recursiveChildMetadata(
_: Any.Type
, index: Int
, fieldMetadata: UnsafeMutablePointer<FieldReflectionMetadata>
) -> Any.Type
#_silgen_name("swift_reflectionMirror_recursiveChildOffset")
fileprivate func swift_reflectionMirror_recursiveChildOffset(_: Any.Type, index: Int) -> Int
protocol Accessors {}
extension Accessors {
static func set(value: Any?, pointer: UnsafeMutableRawPointer) {
if let value = value as? Self {
pointer.assumingMemoryBound(to: self).pointee = value
}
}
}
struct ProtocolTypeContainer {
let type: Any.Type
let witnessTable = 0
var accessors: Accessors.Type {
unsafeBitCast(self, to: Accessors.Type.self)
}
}
protocol KeyValueCoding {
}
extension KeyValueCoding {
private mutating func withPointer<Result>(displayStyle: Mirror.DisplayStyle, _ body: (UnsafeMutableRawPointer) throws -> Result) throws -> Result {
switch displayStyle {
case .struct:
return try withUnsafePointer(to: &self) {
let pointer = UnsafeMutableRawPointer(mutating: $0)
return try body(pointer)
}
case .class:
return try withUnsafePointer(to: &self) {
try $0.withMemoryRebound(to: UnsafeMutableRawPointer.self, capacity: 1) {
try body($0.pointee)
}
}
default:
fatalError("Unsupported type")
}
}
public mutating func setValue(_ value: Any?, forKey key: String) {
let mirror = Mirror(reflecting: self)
guard let displayStyle = mirror.displayStyle
, displayStyle == .class || displayStyle == .struct
else {
return
}
let type = type(of: self)
let count = swift_reflectionMirror_recursiveCount(type)
for i in 0..<count {
var field = FieldReflectionMetadata()
let childType = swift_reflectionMirror_recursiveChildMetadata(type, index: i, fieldMetadata: &field)
defer { field.freeFunc?(field.name) }
guard let name = field.name.flatMap({ String(validatingUTF8: $0) }),
name == key
else {
continue
}
let clildOffset = swift_reflectionMirror_recursiveChildOffset(type, index: i)
try? withPointer(displayStyle: displayStyle) { pointer in
let valuePointer = pointer.advanced(by: clildOffset)
let container = ProtocolTypeContainer(type: childType)
container.accessors.set(value: value, pointer: valuePointer)
}
break
}
}
}
This approach works with both class and struct and supports optional, enum and inherited(for classes) properties:
// Class
enum UserType {
case admin
case guest
case none
}
class User: KeyValueCoding {
let id = 0
let name = "John"
let birthday: Date? = nil
let type: UserType = .none
}
var user = User()
user.setValue(12345, forKey: "id")
user.setValue("Bob", forKey: "name")
user.setValue(Date(), forKey: "birthday")
user.setValue(UserType.admin, forKey: "type")
print(user.id, user.name, user.birthday!, user.type)
// Outputs: 12345 Bob 2022-04-22 10:41:10 +0000 admin
// Struct
struct Book: KeyValueCoding {
let id = 0
let title = "Swift"
let info: String? = nil
}
var book = Book()
book.setValue(56789, forKey: "id")
book.setValue("ObjC", forKey: "title")
book.setValue("Development", forKey: "info")
print(book.id, book.title, book.info!)
// Outputs: 56789 ObjC Development
if you are afraid to use #_silgen_name for shared functions you can access to it dynamically with dlsym e.g.: dlsym(RTLD_DEFAULT, "swift_reflectionMirror_recursiveCount") etc.
UPDATE
There is a swift package (https://github.com/ikhvorost/KeyValueCoding) with full implementation of KeyValueCoding protocol for pure Swift and it supports: get/set values to any property by a key, subscript, get a metadata type, list of properties and more.
Unfortunately, this is impossible to do in Swift.
KVC is an Objective-C thing. Pure Swift optionals (combination of Int and Optional) do not work with KVC. The best thing to do with Int? would be to replace with NSNumber? and KVC will work. This is because NSNumber is still an Objective-C class. This is a sad limitation of the type system.
For your enums though, there is still hope. This will not, however, reduce the amount of coding that you would have to do, but it is much cleaner and at its best, mimics the KVC.
Create a protocol called Settable
protocol Settable {
mutating func setValue(value:String)
}
Have your enum confirm to the protocol
enum Types : Settable {
case FirstType, SecondType, ThirdType
mutating func setValue(value: String) {
if value == ".FirstType" {
self = .FirstType
} else if value == ".SecondType" {
self = .SecondType
} else if value == ".ThirdType" {
self = .ThirdType
} else {
fatalError("The value \(value) is not settable to this enum")
}
}
}
Create a method: setEnumValue(value:value, forKey key:Any)
setEnumValue(value:String forKey key:Any) {
if key == "types" {
self.types.setValue(value)
} else {
fatalError("No variable found with name \(key)")
}
}
You can now call self.setEnumValue(".FirstType",forKey:"types")
If I have an enum with the cases a,b,c,d is it possible for me to cast the string "a" as the enum?
Sure. Enums can have a raw value. To quote the docs:
Raw values can be strings, characters, or any of the integer or
floating-point number types
— Excerpt From: Apple Inc. “The Swift Programming Language.” iBooks. https://itun.es/us/jEUH0.l,
So you can use code like this:
enum StringEnum: String
{
case one = "value one"
case two = "value two"
case three = "value three"
}
let anEnum = StringEnum(rawValue: "value one")!
print("anEnum = \"\(anEnum.rawValue)\"")
Note: You don't need to write = "one" etc. after each case. The default string values are the same as the case names so calling .rawValue will just return a string
EDIT
If you need the string value to contain things like spaces that are not valid as part of a case value then you need to explicitly set the string. So,
enum StringEnum: String
{
case one
case two
case three
}
let anEnum = StringEnum.one
print("anEnum = \"\(anEnum)\"")
gives
anEnum = "one"
But if you want case one to display "value one" you will need to provide the string values:
enum StringEnum: String
{
case one = "value one"
case two = "value two"
case three = "value three"
}
All you need is:
enum Foo: String {
case a, b, c, d
}
let a = Foo(rawValue: "a")
assert(a == Foo.a)
let 💩 = Foo(rawValue: "💩")
assert(💩 == nil)
In Swift 4.2, the CaseIterable protocol can be used for an enum with rawValues, but the string should match against the enum case labels:
enum MyCode : String, CaseIterable {
case one = "uno"
case two = "dos"
case three = "tres"
static func withLabel(_ label: String) -> MyCode? {
return self.allCases.first{ "\($0)" == label }
}
}
usage:
print(MyCode.withLabel("one")) // Optional(MyCode.one)
print(MyCode(rawValue: "uno")) // Optional(MyCode.one)
In case with an enum with Int type you can do it so:
enum MenuItem: Int {
case One = 0, Two, Three, Four, Five //... as much as needs
static func enumFromString(string:String) -> MenuItem? {
var i = 0
while let item = MenuItem(rawValue: i) {
if String(item) == string { return item }
i += 1
}
return nil
}
}
And use:
let string = "Two"
if let item = MenuItem.enumFromString(string) {
//in this case item = 1
//your code
}
Riffing on djruss70's answer to create highly generalized solution:
extension CaseIterable {
static func from(string: String) -> Self? {
return Self.allCases.first { string == "\($0)" }
}
func toString() -> String { "\(self)" }
}
Usage:
enum Chassis: CaseIterable {
case pieridae, oovidae
}
let chassis: Chassis = Chassis.from(string: "oovidae")!
let string: String = chassis.toString()
Note: this will unfortunately not work if the enum is declared #objc. As far as I know as of Swift 5.3 there is no way to get this to work with #objc enum's except brute force solutions (a switch statement).
If someone happens to know of a way to make this work for #objc enums, I'd be very interested in the answer.
Swift 4.2:
public enum PaymentPlatform: String, CaseIterable {
case visa = "Visa card"
case masterCard = "Master card"
case cod = "Cod"
var nameEnum: String {
return Mirror(reflecting: self).children.first?.label ?? String(describing: self)
}
func byName(name: String) -> PaymentPlatform {
return PaymentPlatform.allCases.first(where: {$0.nameEnum.elementsEqual(name)}) ?? .cod
}
}
Extending Duncan C's answer
extension StringEnum: StringLiteralConvertible {
init(stringLiteral value: String){
self.init(rawValue: value)!
}
init(extendedGraphemeClusterLiteral value: String) {
self.init(stringLiteral: value)
}
init(unicodeScalarLiteral value: String) {
self.init(stringLiteral: value)
}
}
For Int enum and their String representation, I declare enum as follows:
enum OrderState: Int16, CustomStringConvertible {
case waiting = 1
case inKitchen = 2
case ready = 3
var description: String {
switch self {
case .waiting:
return "Waiting"
case .inKitchen:
return "InKitchen"
case .ready:
return "Ready"
}
}
static func initialize(stringValue: String)-> OrderState? {
switch stringValue {
case OrderState.waiting.description:
return OrderState.waiting
case OrderState.inKitchen.description:
return OrderState.inKitchen
case OrderState.ready.description:
return OrderState.ready
default:
return nil
}
}
}
Usage:
order.orderState = OrderState.waiting.rawValue
let orderState = OrderState.init(rawValue: order.orderState)
let orderStateStr = orderState?.description ?? ""
print("orderStateStr = \(orderStateStr)")
I used this:
public enum Currency: CaseIterable, Codable {
case AFN = 971 // Afghani (minor=2)
case DZD = 012 // Algerian Dinar (minor=2)
...
private static var cachedLookup: [String: Currency] = [:]
init?(string: String) {
if Self.cachedLookup.isEmpty {
Self.cachedLookup = Dictionary(uniqueKeysWithValues: Self.allCases.map { ("\($0)", $0) })
}
if let currency = Self.cachedLookup[string] {
self = currency
return
} else {
return nil
}
}
}
I found the other answers make this way more complicated then it needs to be. Here is a quick and concise example.
enum Gender: String {
case male, female, unspecified
}
Simple enum, note that I added ": String" to the enum itself to declare the type as string.
Now all you have to do is:
let example: Gender = Gender(rawValue: "male")
And thats it, 'example' is now an enum of type Gender with the value of .male
There is literally nothing else you need to do in Swift 4+.