Tensorflow Resnet with unbalanced classes - class

I use Resnet with Tensorflow to train a model with 20 classes.
My problem is that I have 6-7 classes with A LOT of samples, about the same number of classes with a medium number of samples and the rest of classes with few samples. With this given distribution, my model had a too strong tendency to predict classes with a larger sampling over the smaller one. I've tried to balance my classes by reducing the number of samples of my large classes, and it helped to give a place to the smaller classes during the prediction, but now I've reach a point where I can't improve my model over an accuracy of 90%, and I feel like I'm loosing a lot of valuable information by cutting samples in my large classes.
So, before I go buy more samples, I'm wondering if there is a way to work with unbalanced classes with a logic that model become very good to recognize if the larger classes are present or not (because it has so many samples of them that it is extremely capable to recognize their presence), then, if they are absent, to go check which other classes are present. The idea is to use all the samples I have instead of reducing them.
I've already try the weighted class option in Keras/Tensorflow, it didn't help.

Beside the undersampling technic you used so far, there two other ways to deal with imbalanced data:
class weighting
oversampling
Oversampling is the opposite of what you did ie. you will train every sample of under represneted classes multiple times. class weighting is the case when you tell the model how much it should weigh every class samples in training procedure (weight updates in case of a neural network training). Both these cases are supported by tensorflow and you cand find them in official tutorials.

Related

Is it important to pre-train a model by using meaningless classes?

If I want to train an object-detecion model which can detect 5 classes in the picture, Is it important to pre-train this model in a large dataset like coco(80 categories of objects),or just take 5 categories of coco to pre-train this model(assuming these 5 categories can be found in coco)?
If the 5 classes that you want to detect are already in the MS-COCO dataset, there are two possible options
Use the existing object detection model that was pretrained on the MS-COCO dataset. If the detections are satisfactory, great and you can continue using it
If not, you can finetune the model on data containing your classes of interest, basically use the pretrained MS-COCO weights as a starting point for training the network on your data that consists of those 5 classes (the more data, the better)
Now, if the classes that you wish to detect are not in the original MS-COCO dataset, you will be much better off by using the pretrained MS-COCO weights (trained on 80 classes even if they are not relevant to yours) in the early convolutional layers and then train the detection and deeper layers of the network on your dataset. This is because the low-level features (like edges, blobs, etc.) that the network has learned will mostly be common to all classes and will greatly speed up training

How much data is actually required to train a doc2Vec model?

I have been using gensim's libraries to train a doc2Vec model. After experimenting with different datasets for training, I am fairly confused about what should be an ideal training data size for doc2Vec model?
I will be sharing my understanding here. Please feel free to correct me/suggest changes-
Training on a general purpose dataset- If I want to use a model trained on a general purpose dataset, in a specific use case, I need to train on a lot of data.
Training on the context related dataset- If I want to train it on the data having the same context as my use case, usually the training data size can have a smaller size.
But what are the number of words used for training, in both these cases?
On a general note, we stop training a ML model, when the error graph reaches an "elbow point", where further training won't help significantly in decreasing error. Has any study being done in this direction- where doc2Vec model's training is stopped after reaching an elbow ?
There are no absolute guidelines - it depends a lot on your dataset and specific application goals. There's some discussion of the sizes of datasets used in published Doc2Vec work at:
what is the minimum dataset size needed for good performance with doc2vec?
If your general-purpose corpus doesn't match your domain's vocabulary – including the same words, or using words in the same senses – that's a problem that can't be fixed with just "a lot of data". More data could just 'pull' word contexts and representations more towards generic, rather than domain-specific, values.
You really need to have your own quantitative, automated evaluation/scoring method, so you can measure whether results with your specific data and goals are sufficient, or improving with more data or other training tweaks.
Sometimes parameter tweaks can help get the most out of thin data – in particular, more training iterations or a smaller model (fewer vector-dimensions) can slightly offset some issues with small corpuses, sometimes. But the Word2Vec/Doc2Vec really benefit from lots of subtly-varied, domain-specific data - it's the constant, incremental tug-of-war between all the text-examples during training that helps the final representations settle into a useful constellation-of-arrangements, with the desired relative-distance/relative-direction properties.

Use a trained neural network to imitate its training data

I'm in the overtures of designing a prose imitation system. It will read a bunch of prose, then mimic it. It's mostly for fun so the mimicking prose doesn't need to make too much sense, but I'd like to make it as good as I can, with a minimal amount of effort.
My first idea is to use my example prose to train a classifying feed-forward neural network, which classifies its input as either part of the training data or not part. Then I'd like to somehow invert the neural network, finding new random inputs that also get classified by the trained network as being part of the training data. The obvious and stupid way of doing this is to randomly generate word lists and only output the ones that get classified above a certain threshold, but I think there is a better way, using the network itself to limit the search to certain regions of the input space. For example, maybe you could start with a random vector and do gradient descent optimisation to find a local maximum around the random starting point. Is there a word for this kind of imitation process? What are some of the known methods?
How about Generative Adversarial Networks (GAN, Goodfellow 2014) and their more advanced siblings like Deep Convolutional Generative Adversarial Networks? There are plenty of proper research articles out there, and also more gentle introductions like this one on DCGAN and this on GAN. To quote the latter:
GANs are an interesting idea that were first introduced in 2014 by a
group of researchers at the University of Montreal lead by Ian
Goodfellow (now at OpenAI). The main idea behind a GAN is to have two
competing neural network models. One takes noise as input and
generates samples (and so is called the generator). The other model
(called the discriminator) receives samples from both the generator
and the training data, and has to be able to distinguish between the
two sources. These two networks play a continuous game, where the
generator is learning to produce more and more realistic samples, and
the discriminator is learning to get better and better at
distinguishing generated data from real data. These two networks are
trained simultaneously, and the hope is that the competition will
drive the generated samples to be indistinguishable from real data.
(DC)GAN should fit your task quite well.

Shouldn't we take average of n models in cross validation in linear regression?

I have a question regarding cross validation in Linear regression model.
From my understanding, in cross validation, we split the data into (say) 10 folds and train the data from 9 folds and the remaining folds we use for testing. We repeat this process until we test all of the folds, so that every folds are tested exactly once.
When we are training the model from 9 folds, should we not get a different model (may be slightly different from the model that we have created when using the whole dataset)? I know that we take an average of all the "n" performances.
But, what about the model? Shouldn't the resulting model also be taken as the average of all the "n" models? I see that the resulting model is same as the model which we created using whole of the dataset before cross-validation. If we are considering the overall model even after cross-validation (and not taking avg of all the models), then what's the point of calculating average performance from n different models (because they are trained from different folds of data and are supposed to be different, right?)
I apologize if my question is not clear or too funny.
Thanks for reading, though!
I think that there is some confusion in some of the answers proposed because of the use of the word "model" in the question asked. If I am guessing correctly, you are referring to the fact that in K-fold cross-validation we learn K-different predictors (or decision functions), which you call "model" (this is a bad idea because in machine learning we also do model selection which is choosing between families of predictors and this is something which can be done using cross-validation). Cross-validation is typically used for hyperparameter selection or to choose between different algorithms or different families of predictors. Once these chosen, the most common approach is to relearn a predictor with the selected hyperparameter and algorithm from all the data.
However, if the loss function which is optimized is convex with respect to the predictor, than it is possible to simply average the different predictors obtained from each fold.
This is because for a convex risk, the risk of the average of the predictor is always smaller than the average of the individual risks.
The PROs and CONs of averaging (vs retraining) are as follows
PROs: (1) In each fold, the evaluation that you made on the held out set gives you an unbiased estimate of the risk for those very predictors that you have obtained, and for these estimates the only source of uncertainty is due to the estimate of the empirical risk (the average of the loss function) on the held out data.
This should be contrasted with the logic which is used when you are retraining and which is that the cross-validation risk is an estimate of the "expected value of the risk of a given learning algorithm" (and not of a given predictor) so that if you relearn from data from the same distribution, you should have in average the same level of performance. But note that this is in average and when retraining from the whole data this could go up or down. In other words, there is an additional source of uncertainty due to the fact that you will retrain.
(2) The hyperparameters have been selected exactly for the number of datapoints that you used in each fold to learn. If you relearn from the whole dataset, the optimal value of the hyperparameter is in theory and in practice not the same anymore, and so in the idea of retraining, you really cross your fingers and hope that the hyperparameters that you have chosen are still fine for your larger dataset.
If you used leave-one-out, there is obviously no concern there, and if the number of data point is large with 10 fold-CV you should be fine. But if you are learning from 25 data points with 5 fold CV, the hyperparameters for 20 points are not really the same as for 25 points...
CONs: Well, intuitively you don't benefit from training with all the data at once
There are unfortunately very little thorough theory on this but the following two papers especially the second paper consider precisely the averaging or aggregation of the predictors from K-fold CV.
Jung, Y. (2016). Efficient Tuning Parameter Selection by Cross-Validated Score in High Dimensional Models. International Journal of Mathematical and Computational Sciences, 10(1), 19-25.
Maillard, G., Arlot, S., & Lerasle, M. (2019). Aggregated Hold-Out. arXiv preprint arXiv:1909.04890.
The answer is simple: you use the process of (repeated) cross validation (CV) to obtain a relatively stable performance estimate for a model instead of improving it.
Think of trying out different model types and parametrizations which are differently well suited for your problem. Using CV you obtain many different estimates on how each model type and parametrization would perform on unseen data. From those results you usually choose one well suited model type + parametrization which you will use, then train it again on all (training) data. The reason for doing this many times (different partitions with repeats, each using different partition splits) is to get a stable estimation of the performance - which will enable you to e.g. look at the mean/median performance and its spread (would give you information about how well the model usually performs and how likely it is to be lucky/unlucky and get better/worse results instead).
Two more things:
Usually, using CV will improve your results in the end - simply because you take a model that is better suited for the job.
You mentioned taking the "average" model. This actually exists as "model averaging", where you average the results of multiple, possibly differently trained models to obtain a single result. Its one way to use an ensemble of models instead of a single one. But also for those you want to use CV in the end for choosing reasonable model.
I like your thinking. I think you have just accidentally discovered Random Forest:
https://en.wikipedia.org/wiki/Random_forest
Without repeated cv your seemingly best model is likely to be only a mediocre model when you score it on new data...

Genetic algorithm for classification

I am trying to solve classification problem using Matlab GPTIPS framework.
I managed to build reasonable data representation and fitness function so far and got an average accuracy per class near 65%.
What I need now is some help with two difficulties:
My data is biased. Basically I am solving binary classification problem and only 20% of data belongs to class 1, while other 80% belong to class 0. I used accuracy of prediction as my fitness function at first, but it was really bad. The best I have now is
Fitness = 0.5*(PositivePredictiveValue + NegativePredictiveValue) - const*ComplexityOfSolution
Please, advize, how can I improve my function to make correction for data bias.
Second problem is overfitting. I divided my data into three parts: training (70%), testing (20%), validation (10%). I train each chromosome on training set, then evaluate it's fitness function on testing set. This routine allows me to reach fitness of 0.82 on my test data for the best individual in population. But same individual's result on validation data is only 60%.
I added validation check for best individual each time before new population is generated. Then I compare fitness on validation set with fitness on test set. If difference is more then 5%, then I increase penalty for solution complexity in my fitness function. But it didn't help.
I could also try to evaluate all individuals with validation set during each generation, and simply remove overfitted ones. But then I don't see any difference between my test and validation data. What else can be done here?
UPDATE:
For my second question I've found great article "Experiments on Controlling Overtting
in Genetic Programming" Along with some article authors' ideas on dealing with overfitting in GP it has impressive review with a lot of references to many different approaches to the issue. Now I have a lot of new ideas I can try for my problem.
Unfortunately, still cant' find anything on selecting a proper fitness function which will take into account unbalanced class proportions in my data.
65% accuracy is very bad when the baseline (classify everything as the class with most samples) would be 80%. You need to achieve at least baseline classification in order to have a better model than the naive one.
I would not penalize complexity. Rather limit the tree size (if possible). You could identify simpler models during the run, like storing a pareto front of models with quality and complexity as its two fitness values.
In HeuristicLab we have integrated GP based classification that can do these things. There are several options: You can choose to use MSE for classification or R2. In the latest trunk build there is also an evaluator to optimize accuracy directly (exactly speaking it optimizes the classification penalties). Optimizing MSE means it assigns each class a value (1, 2, 3,...) and tries to minimize mean squared error from that value. This may not seem optimal at first, but works. Optimizing accuracy directly may lead to faster overfitting. There is also a formula simplifier which allows you to prune and shrink your formula (and view the effects of that).
Also, does it need to be GP? Have you tried Random Forest Classification or Support Vector Machines as well? RF are pretty fast and work pretty well usually.