Set/sequence summation operator? - vdm++

I have a set, S = { 1, 2, 3, 4, 5 }.
If I wanted to sum this in standard logic it's just ∑S (no MathJax on SO so I can't format this nicely).
What's the VDM equivalent? I don't see anything in the numerics/sets section of the language reference.

There isn't a standard library function to do this (though perhaps there should be). You would sum a set with a simple recursive function:
sum: set of nat +> nat
sum(s) ==
if s = {}
then 0
else let e in set s in
e + sum(s \ {e})
measure card s;
The "let" selects an arbitrary element from the set, and then add that to the sum of the remainder. The measure says that the recursion always deals with smaller sets.

This should work:
sum(S)
But you could find this very easily.

Related

How do I transform/operate on a set/sequence?

I have a set S = { 1, 2, 3, 4, 5 }.
What is the syntax for changing the contents of the set (or rather, creating a new set) by applying a mathematical operation to it e.g. multiplication, power?
This sounds like a case for a set comprehension. So you generate f(e) for those elements of s which match a predicate p(e). The general syntax is:
{ f(s) | e in set S & p(e) }
So for example:
{ e*e | e in set {1,2,3,4,5,6} & e mod 2 = 0 } = {4, 16, 36}
There are more complex cases where you bind more than one element from the set, but this is enough to meet your example :)

How can a+b be NOT equal to b+a?

Our professor said that in computer logic it's important when you add a number to another so a+b and b+a are not always equal.
Though,I couldn't find an example of when they would be different and why they won't be equal.
I think it would have to do something with bits but then again ,I'm not sure.
Although you don't share a lot of context it sounds as if your professor did not elaborate on that or you missed something.
In the case that he was talking about logic in general, he could have meant that the behavior of the + operator depends on how you define it.
Example: The definition (+) a b := if (a==0) then 5 else 0 results in a + operator which is not associative, e.g. 1 + 0 would be 0 but 0 + 1 would be 5. There are many programming languages that allow this redefinition (overwriting) of standard operators.
But with the context you share, this is all speculative.
One obscure possibility is if one or other of a or b is a high-definition timer value - ticks since program start.
Due to the cpu cycle(s) consumed to pop one of the values before addition, it's possible the sum could be different dependant on the order.
One more possibility is if a and b are expressions with side effects. E.g.
int x = 0;
int a() {
x += 1;
return x;
}
int b() {
return x;
}
a() + b() will return 2 and b() + a() will return 1 (both from initial state).
Or it could be that a or b are NaN, in which case even a == a is false. Though this one isn't connected with "when you add a number to another".

Why does passing an unnamed function as transform to array add one to iteration count in playground in furthest abstractions

I'm in the process of getting comfortable passing unnamed functions as arguments and I am using this to practice with, based off of the examples in the Swift Programming Guide.
So we have an array of Ints:
var numbers: Int[] = [1, 2, 3, 4, 5, 6, 7]
And I apply a transform like so: (7)
func transformNumber(number: Int) -> Int {
let result = number * 3
return result
}
numbers = numbers.map(transformNumber)
Which is equal to: (7)
numbers = numbers.map({(number: Int) -> Int in
let result = number * 3
return result;
})
Which is equal to: (8)
numbers = numbers.map({number in number * 3})
Which is equal to: (8)
numbers = numbers.map({$0 * 3})
Which is equal to: (8)
numbers = numbers.map() {$0 * 3}
As you can see in the following graphic, the iteration count in the playground sidebar shows that in the furthest abstraction of a function declaration, it has an 8 count.
Question
Why is it showing as 8 iterations for the last two examples?
It's not showing 8 iterations, really. It's showing that 8 things executed on that line. There were 7 executions as part of the map function, and an 8th to do the assignment back into the numbers variable.
It looks like this could probably provide more helpful diagnostics. I would highly encourage you to provide feedback via https://bugreport.apple.com.
Slightly rewriting your experiment to use only closures, the call counts still differ by one:
Case 1: Explicitly specifying argument types (visit count is 7)
var f1 = {(number: Int) -> Int in
let result = number * 3
return result
}
numbers.map(f1)
Case 2: Implicit argument types (visit count is 8)
var f2 = {$0 * 3}
numbers.map(f2)
If the (x times) count reported by the REPL does indeed represent a count of visits to that code location, and noting that the count is greater by one in cases where the closure type arguments are not explicitly specified (e.g. f2), my guess is that at least in the playground REPL, the extra visit is to establish actual parameter types and fill that gap in the underlying AST.

Calculating prime numbers in Scala: how does this code work?

So I've spent hours trying to work out exactly how this code produces prime numbers.
lazy val ps: Stream[Int] = 2 #:: Stream.from(3).filter(i =>
ps.takeWhile{j => j * j <= i}.forall{ k => i % k > 0});
I've used a number of printlns etc, but nothings making it clearer.
This is what I think the code does:
/**
* [2,3]
*
* takeWhile 2*2 <= 3
* takeWhile 2*2 <= 4 found match
* (4 % [2,3] > 1) return false.
* takeWhile 2*2 <= 5 found match
* (5 % [2,3] > 1) return true
* Add 5 to the list
* takeWhile 2*2 <= 6 found match
* (6 % [2,3,5] > 1) return false
* takeWhile 2*2 <= 7
* (7 % [2,3,5] > 1) return true
* Add 7 to the list
*/
But If I change j*j in the list to be 2*2 which I assumed would work exactly the same, it causes a stackoverflow error.
I'm obviously missing something fundamental here, and could really use someone explaining this to me like I was a five year old.
Any help would be greatly appreciated.
I'm not sure that seeking a procedural/imperative explanation is the best way to gain understanding here. Streams come from functional programming and they're best understood from that perspective. The key aspects of the definition you've given are:
It's lazy. Other than the first element in the stream, nothing is computed until you ask for it. If you never ask for the 5th prime, it will never be computed.
It's recursive. The list of prime numbers is defined in terms of itself.
It's infinite. Streams have the interesting property (because they're lazy) that they can represent a sequence with an infinite number of elements. Stream.from(3) is an example of this: it represents the list [3, 4, 5, ...].
Let's see if we can understand why your definition computes the sequence of prime numbers.
The definition starts out with 2 #:: .... This just says that the first number in the sequence is 2 - simple enough so far.
The next part defines the rest of the prime numbers. We can start with all the counting numbers starting at 3 (Stream.from(3)), but we obviously need to filter a bunch of these numbers out (i.e., all the composites). So let's consider each number i. If i is not a multiple of a lesser prime number, then i is prime. That is, i is prime if, for all primes k less than i, i % k > 0. In Scala, we could express this as
nums.filter(i => ps.takeWhile(k => k < i).forall(k => i % k > 0))
However, it isn't actually necessary to check all lesser prime numbers -- we really only need to check the prime numbers whose square is less than or equal to i (this is a fact from number theory*). So we could instead write
nums.filter(i => ps.takeWhile(k => k * k <= i).forall(k => i % k > 0))
So we've derived your definition.
Now, if you happened to try the first definition (with k < i), you would have found that it didn't work. Why not? It has to do with the fact that this is a recursive definition.
Suppose we're trying to decide what comes after 2 in the sequence. The definition tells us to first determine whether 3 belongs. To do so, we consider the list of primes up to the first one greater than or equal to 3 (takeWhile(k => k < i)). The first prime is 2, which is less than 3 -- so far so good. But we don't yet know the second prime, so we need to compute it. Fine, so we need to first see whether 3 belongs ... BOOM!
* It's pretty easy to see that if a number n is composite then the square of one of its factors must be less than or equal to n. If n is composite, then by definition n == a * b, where 1 < a <= b < n (we can guarantee a <= b just by labeling the two factors appropriately). From a <= b it follows that a^2 <= a * b, so it follows that a^2 <= n.
Your explanations are mostly correct, you made only two mistakes:
takeWhile doesn't include the last checked element:
scala> List(1,2,3).takeWhile(_<2)
res1: List[Int] = List(1)
You assume that ps always contains only a two and a three but because Stream is lazy it is possible to add new elements to it. In fact each time a new prime is found it is added to ps and in the next step takeWhile will consider this new added element. Here, it is important to remember that the tail of a Stream is computed only when it is needed, thus takeWhile can't see it before forall is evaluated to true.
Keep these two things in mind and you should came up with this:
ps = [2]
i = 3
takeWhile
2*2 <= 3 -> false
forall on []
-> true
ps = [2,3]
i = 4
takeWhile
2*2 <= 4 -> true
3*3 <= 4 -> false
forall on [2]
4%2 > 0 -> false
ps = [2,3]
i = 5
takeWhile
2*2 <= 5 -> true
3*3 <= 5 -> false
forall on [2]
5%2 > 0 -> true
ps = [2,3,5]
i = 6
...
While these steps describe the behavior of the code, it is not fully correct because not only adding elements to the Stream is lazy but every operation on it. This means that when you call xs.takeWhile(f) not all values until the point when f is false are computed at once - they are computed when forall wants to see them (because it is the only function here that needs to look at all elements before it definitely can result to true, for false it can abort earlier). Here the computation order when laziness is considered everywhere (example only looking at 9):
ps = [2,3,5,7]
i = 9
takeWhile on 2
2*2 <= 9 -> true
forall on 2
9%2 > 0 -> true
takeWhile on 3
3*3 <= 9 -> true
forall on 3
9%3 > 0 -> false
ps = [2,3,5,7]
i = 10
...
Because forall is aborted when it evaluates to false, takeWhile doesn't calculate the remaining possible elements.
That code is easier (for me, at least) to read with some variables renamed suggestively, as
lazy val ps: Stream[Int] = 2 #:: Stream.from(3).filter(i =>
ps.takeWhile{p => p * p <= i}.forall{ p => i % p > 0});
This reads left-to-right quite naturally, as
primes are 2, and those numbers i from 3 up, that all of the primes p whose square does not exceed the i, do not divide i evenly (i.e. without some non-zero remainder).
In a true recursive fashion, to understand this definition as defining the ever increasing stream of primes, we assume that it is so, and from that assumption we see that no contradiction arises, i.e. the truth of the definition holds.
The only potential problem after that, is the timing of accessing the stream ps as it is being defined. As the first step, imagine we just have another stream of primes provided to us from somewhere, magically. Then, after seeing the truth of the definition, check that the timing of the access is okay, i.e. we never try to access the areas of ps before they are defined; that would make the definition stuck, unproductive.
I remember reading somewhere (don't recall where) something like the following -- a conversation between a student and a wizard,
student: which numbers are prime?
wizard: well, do you know what number is the first prime?
s: yes, it's 2.
w: okay (quickly writes down 2 on a piece of paper). And what about the next one?
s: well, next candidate is 3. we need to check whether it is divided by any prime whose square does not exceed it, but I don't yet know what the primes are!
w: don't worry, I'l give them to you. It's a magic I know; I'm a wizard after all.
s: okay, so what is the first prime number?
w: (glances over the piece of paper) 2.
s: great, so its square is already greater than 3... HEY, you've cheated! .....
Here's a pseudocode1 translation of your code, read partially right-to-left, with some variables again renamed for clarity (using p for "prime"):
ps = 2 : filter (\i-> all (\p->rem i p > 0) (takeWhile (\p->p^2 <= i) ps)) [3..]
which is also
ps = 2 : [i | i <- [3..], and [rem i p > 0 | p <- takeWhile (\p->p^2 <= i) ps]]
which is a bit more visually apparent, using list comprehensions. and checks that all entries in a list of Booleans are True (read | as "for", <- as "drawn from", , as "such that" and (\p-> ...) as "lambda of p").
So you see, ps is a lazy list of 2, and then of numbers i drawn from a stream [3,4,5,...] such that for all p drawn from ps such that p^2 <= i, it is true that i % p > 0. Which is actually an optimal trial division algorithm. :)
There's a subtlety here of course: the list ps is open-ended. We use it as it is being "fleshed-out" (that of course, because it is lazy). When ps are taken from ps, it could potentially be a case that we run past its end, in which case we'd have a non-terminating calculation on our hands (a "black hole"). It just so happens :) (and needs to ⁄ can be proved mathematically) that this is impossible with the above definition. So 2 is put into ps unconditionally, so there's something in it to begin with.
But if we try to "simplify",
bad = 2 : [i | i <- [3..], and [rem i p > 0 | p <- takeWhile (\p->p < i) bad]]
it stops working after producing just one number, 2: when considering 3 as the candidate, takeWhile (\p->p < 3) bad demands the next number in bad after 2, but there aren't yet any more numbers there. It "jumps ahead of itself".
This is "fixed" with
bad = 2 : [i | i <- [3..], and [rem i p > 0 | p <- [2..(i-1)] ]]
but that is a much much slower trial division algorithm, very far from the optimal one.
--
1 (Haskell actually, it's just easier for me that way :) )

Why are products called minterms and sums called maxterms?

Do they have a reason for doing so? I mean, in the sum of minterms, you look for the terms with the output 1; I don't get why they call it "minterms." Why not maxterms because 1 is well bigger than 0?
Is there a reason behind this that I don't know? Or should I just accept it without asking why?
The convention for calling these terms "minterms" and "maxterms" does not correspond to 1 being greater than 0. I think the best way to answer is with an example:
Say that you have a circuit and it is described by X̄YZ̄ + XȲZ.
"This form is composed of two groups of three. Each group of three is a 'minterm'. What the expression minterm is intended to imply it that each of the groups of three in the expression takes on a value of 1 only for one of the eight possible combinations of X, Y and Z and their inverses." http://www.facstaff.bucknell.edu/mastascu/elessonshtml/Logic/Logic2.html
So what the "min" refers to is the fact that these terms are the "minimal" terms you need in order to build a certain function. If you would like more information, the example above is explained in more context in the link provided.
Edit: The "reason they used MIN for ANDs, and MAX for ORs" is that:
In Sum of Products (what you call ANDs) only one of the minterms must be true for the expression to be true.
In Product of Sums (what you call ORs) all the maxterms must be true for the expression to be true.
min(0,0) = 0
min(0,1) = 0
min(1,0) = 0
min(1,1) = 1
So minimum is pretty much like logical AND.
max(0,0) = 0
max(0,1) = 1
max(1,0) = 1
max(1,1) = 1
So maximum is pretty much like logical OR.
In Sum Of Products (SOP), each term of the SOP expression is called a "minterm" because,
say, an SOP expression is given as:
F(X,Y,Z) = X'.Y'.Z + X.Y'.Z' + X.Y'.Z + X.Y.Z
for this SOP expression to be "1" or true (being a positive logic),
ANY of the term of the expression should be 1.
thus the word "minterm".
i.e, any of the term (X'Y'Z) , (XY'Z') , (XY'Z) or (XYZ) being 1, results in F(X,Y,Z) to be 1!!
Thus they are called "minterms".
On the other hand,
In Product Of Sum (POS), each term of the POS expression is called a "maxterm" because,
say an POS expression is given as: F(X,Y,Z) = (X+Y+Z).(X+Y'+Z).(X+Y'+Z').(X'+Y'+Z)
for this POS expression to be "0" (because POS is considered as a negative logic and we consider 0 terms), ALL of the terms of the expression should be 0. thus the word "max term"!!
i.e for F(X,Y,Z) to be 0,
each of the terms (X+Y+Z), (X+Y'+Z), (X+Y'+Z') and (X'+Y'+Z) should be equal to "0", otherwise F won't be zero!!
Thus each of the terms in POS expression is called a MAXTERM (maximum all the terms!) because all terms should be zero for F to
be zero, whereas any of the terms in POS being one results in F to be
one. Thus it is known as MINTERM (minimum one term!)
I believe that AB is called a minterm is because it occupies the minimum area on a Venn diagram; while A+B is called a MAXTERM because it occupies a maximum area in a Venn diagram. Draw the two diagrams and the meanings will become obvious
Ed Brumgnach
Here is another way to think about it.
A product is called a minterm because it has minimum-satisfiability where as a sum is called a maxterm because it has maximum-satisfiability among all practically interesting boolean functions.
They are called terms because they are used as the building-blocks of various canonical representations of arbitrary boolean functions.
Details:
Note that '0' and '1' are the trivial boolean functions.
Assume a set of boolean variables x1,x2,...,xk and a non-trivial boolean function f(x1,x2,...,xk).
Conventionally, an input is said to satisfy the boolean function f, whenever f holds a value of 1 for that input.
Note that there are exactly 2^k inputs possible, and any non-trivial boolean-function can satisfy a minimum of 1 input to a maximum of 2^k -1 inputs.
Now consider the two simple boolean functions of interest: sum of all variables S, and product of all variables P (variables may/may-not appear as complements). S is one boolean function that has maximum-satisfiability hence called as maxterm, where as P is the one having minimum-satisfiability hence called a minterm.