my code:
I ran it three times with the same number, the output:
Wrong!
the FibonacciNumber test Started!!!
the FibonacciNumber(8) is
20
This is correct
the FibonacciNumber test Started!!!
the FibonacciNumber(8) is
21
Wrong!
the FibonacciNumber test Started!!!
the FibonacciNumber(8) is
19
It is not safe to have a global variable that is updated by multiple actors at the same time. Multiple actors can be processing messages at the same time, and if two or more actors try to update those variables at the same time, it will not give the correct result. So with this algorithm you at very least need to make counter and result into AtomicInteger.
It is much better to improve the algorithm to avoid global variables. The state information should be passed between the actors using requests and replies, rather than being in variables that are accessed by multiple actors simultaneously
Related
I'm writing an application that reads relatively large text files, validates and transforms the data (every line in a text file is an own item, there are around 100M items/file) and creates some kind of output. There already exists a multihreaded Java application (using BlockingQueue between Reading/Processing/Persisting Tasks), but I want to implement a Scala application that does the same thing.
Akka seems to be a very popular choice for building concurrent applications. Unfortunately, due to the asynchronous nature of actors, I still don't understand what a single actor can or can't do, e.g. if I can use actors as traditional workers that do some sort of calculation.
Several documentations say that Actors should never block and I understand why. But the given examples for blocking code always only mention such things as blocking file/network IO.. things that make the actor waiting for a short period of time which is of course a bad thing.
But what if the actor is "blocking" because it actually does something useful instead of waiting? In my case, the processing and transformation of a single line/item of text takes 80ms which is quite a long time (pure processing, no IO involved). Can this work be done by an actor directly or should I use a Future instead (but then, If I have to use Futures anyway, why use Akka in the first place..)?.
The Akka docs and examples show that work can be done directly by actors. But it seems that the authors only do very simplistic work (such as calling filter on a String or incrementing a counter and that's it). I don't know if they do this to keep the docs simple and concise or because you really should not do more that within an actor.
How would you design an Akka-based application for my use case (reading text file, processing every line which takes quite some time, eventually persisting the result)? Or is this some kind of problem that does not suit to Akka?
It all depends on the type of an actor.
I use this rule of thumb: if you don't need to talk to this actor and this actor does not have any other responsibilities, then it's ok to block in it doing actual work. You can treat it as a Future and this is what I would call a "worker".
If you block in an actor that is not a leaf node (worker), i.e. work distributor then the whole system will slow down.
There are a few patterns that involve work pulling/pushing or actor per request model. Either of those could be a fit for your application. You can have a manager that creates an actor for each piece of work and when the work is finished actor sends result back to manager and dies. You can also keep an actor alive and ask for more work from that actor. You can also combine actors and Futures.
Sometimes you want to be able to talk to a worker if your processing is more complex and involves multiple stages. In that case a worker can delegate work yet to another actor or to a future.
To sum-up don't block in manager/work distribution actors. It's ok to block in workers if that does not slow your system down.
disclaimer: by blocking I mean doing actual work, not just busy waiting which is never ok.
Doing computations that take 100ms is fine in an actor. However, you need to make sure to properly deal with backpressure. One way would be to use the work-pulling pattern, where your CPU bound actors request new work whenever they are ready instead of receiving new work items in a message.
That said, your problem description sounds like a processing pipeline that might benefit from using a higher level abstraction such as akka streams. Basically, produce a stream of file names to be processed and then use transformations such as map to get the desired result. I have something like this in production that sounds pretty similar to your problem description, and it works very well provided the data used by the individual processing chunks is not too large.
Of course, a stream will also be materialized to a number of actors. But the high level interface will be more type-safe and easier to reason about.
Alright so I have never done intense concurrent operations like this before, theres three main parts to this algorithm.
This all starts with a Vector of around 1 Million items.
Each item gets processed in 3 main stages.
Task 1: Make an HTTP Request, Convert received data into a map of around 50 entries.
Task 2: Receive the map and do some computations to generate a class instance based off the info found in the map.
Task 3: Receive the class and generate/add to multiple output files.
I initially started out by concurrently running task 1 with 64K entries across 64 threads (1024 entries per thread.). Generating threads in a for loop.
This worked well and was relatively fast, but I keep hearing about actors and how they are heaps better than basic Java threads/Thread pools. I've created a few actors etc. But don't know where to go from here.
Basically:
1. Are actors the right way to achieve fast concurrency for this specific set of tasks. Or is there another way I should go about it.
2. How do you know how many threads/actors are too many, specifically in task one, how do you know what the limit is on number of simultaneous connections is (Im on mac). Is there a golden rue to follow? How many threads vs how large per thread pool? And the actor equivalents?
3. Is there any code I can look at that implements actors for a similar fashion? All the code Im seeing is either getting an actor to print hello world, or super complex stuff.
1) Actors are a good choice to design complex interactions between components since they resemble "real life" a lot. You can see them as different people sending each other requests, it is very natural to model interactions. However, they are most powerful when you want to manage changing state in your application, which does not seem to be the case for you. You can achieve fast concurrency without actors. Up to you.
2) If none of your operations is blocking the best rule is amount of threads = amount of CPUs. If you use a non blocking HTTP client, and NIO when writing your output files then you should be fully non-blocking on IOs and can just safely set the thread count for your app to the CPU count on your machine.
3) The documentation on http://akka.io is very very good and comprehensive. If you have no clue how to use the actor model I would recommend getting a book - not necessarily about Akka.
1) It sounds like most of your steps aren't stateful, in which case actors add complication for no real benefit. If you need to coordinate multiple tasks in a mutable way (e.g. for generating the output files) then actors are a good fit for that piece. But the HTTP fetches should probably just be calls to some nonblocking HTTP library (e.g. spray-client - which will in fact use actors "under the hood", but in a way that doesn't expose the statefulness to you).
2) With blocking threads you pretty much have to experiment and see how many you can run without consuming too many resources. Worry about how many simultaneous connections the remote system can handle rather than hitting any "connection limits" on your own machine (it's possible you'll hit the file descriptor limit but if so best practice is just to increase it). Once you figure that out, there's no value in having more threads than the number of simultaneous connections you want to make.
As others have said, with nonblocking everything you should probably just have a number of threads similar to the number of CPU cores (I've also heard "2x number of CPUs + 1", on the grounds that that ensures there will always be a thread available whenever a CPU is idle).
With actors I wouldn't worry about having too many. They're very lightweight.
If you have really no expierience in Akka try to start with something simple like doing a one-to-one actor-thread rewriting of your code. This will be easier to grasp how things work in akka.
Spin two actors at the begining one for receiving requests and one for writting to the output file. Then when request is received create an actor in request-receiver actor that will do the computation and send the result to the writting actor.
What is the idiomatic way to implement a pool of workers in Scala, such that work units coming from some source can be allocated to the next free worker and processed asynchronously? Each worker would produce a result and eventually, all the results would need to get combined to produce the overall result.
We do not know the number of work units on which we need to run a worker in advance and we do not know in advance the optimal number of workers, because that will depend on the system we run on.
So roughly what should happen is this:
for each work unit, eventually start a worker to process it
for each finished worker, combine its result into the global result
return the global result after all the worker results have been combined
Should this be done exclusively by futures, no matter how many work units and how many workers there will be? What if the results can only be combined when they are ALL available?
Most examples of futures I have seen have a fixed number of futures and then use for comprehension to combine them, but what if the number of futures is not known and I have e.g. just a collection of an arbitrary number of futures? What if there will be billions of easier work units to get processed that way versus just a few dozen long-running ones?
Are there other, better ways to do this, e.g. with Actors instead?
How would the design ideally change when the results of each worker does not need to get combined and each worker is completely independent of the others?
Too many questions in your question to address them all.
Basically, Futures will do what you want, you can create the ExecutionContext that better fits your needs. To combine the results: Future.sequence.
I wrote an application that uses scala parallel collections and akka actors, and I would now like to study its "strong scaling" properties, i.e. how the running time for a given problem instance changes, as a function of the number of cores/threads available.
What would be a proper way of going about this? How can I tell the application to use only up to n cores/threads?
I'm new to Scala in general and Actors in particular and my problem is so basic, the online resources I have found don't cover it.
I have a CPU-intensive, easily parallelized algorithm that will be run on an n-core machine (I don't know n). How do I implement this in Actors so that all available cores address the problem?
The first way I thought of was to simple break the problem into m pieces (where m is some medium number like 10,000) and create m Actors, one for each piece, give each Actor its little piece and let 'em go.
Somehow, this struck me as inefficient. Zillions of Actors just hanging around, waiting for some CPU love, pointlessly switching contexts...
Then I thought, make some smaller number of Actors, and feed each one several pieces. The problem was, there's no reason to expect the pieces are the same size, so one core might get bogged down, with many of its tasks still queued, while other cores are idle.
I noodled around with a Supervisor that knew which Actors were busy, and eventually realized that this has to be a solved problem. There must be a standard pattern (maybe even a standard library) for dealing with this very generic issue. Any suggestions?
Take a look at the Akka library, which includes an implementaton of actors. The Dispatchers Module gives you more options for limiting actors to cpu threads (HawtDispatch-based event-driven) and/or balancing the workload (Work-stealing event-based).
Generally, there're 2 kinds of actors: those that are tied to threads (one thread per actor), and those that share 1+ thread, working behind a scheduler/dispatcher that allocates resources (= possibility to execute a task/handle incoming message against controlled thread-pool or a single thread).
I assume, you use second type of actors - event-driven actors, because you mention that you run 10k of them. No matter how many event-driven actors you have (thousands or millions), all of them will be fighting for the small thread pool to handle the message. Therefore, you will even have a worse performance dividing your task queue into that huge number of portions - scheduler will either try to handle messages sent to 10k actors against a fixed thread pool (which is slow), or will allocate new threads in the pool (if the pool is not bounded), which is dangerous (in the worst case, there will be started 10k threads to handle messages).
Event-driven actors are good for short-time (ideally, non-blocking) tasks. If you're dealing with CPU-intensive tasks I'd limit number of threads in the scheduler/dispatcher pool (when you use event-driven actors) or actors themselves (when you use thread-based actors) to the number of cores to achieve the best performance.
If you want this to be done automatically (adjust number of threads in dispatcher pool to the number of cores), you should use HawtDisaptch (or it's Akka implementation), as it was proposed earlier:
The 'HawtDispatcher' uses the
HawtDispatch threading library which
is a Java clone of libdispatch. All
actors with this type of dispatcher
are executed on a single system wide
fixed sized thread pool. The number of
of threads will match the number of
cores available on your system. The
dispatcher delivers messages to the
actors in the order that they were
producer at the sender.
You should look into Futures I think. In fact, you probably need a threadpool which simply queues threads when a max number of threads has been reached.
Here is a small example involving futures: http://blog.tackley.net/2010/01/scala-futures.html
I would also suggest that you don't pay too much attention to the context switching since you really can't do anything but rely on the underlying implementation. Of course a rule of thumb would be to keep the active threads around the number of physical cores, but as I noted above this could be handled by a threadpool with a fifo-queue.
NOTE that I don't know if Actors in general or futures are implemented with this kind of pool.
For thread pools, look at this: http://www.scala-lang.org/api/current/scala/concurrent/ThreadPoolRunner.html
and maybe this: http://www.scala-lang.org/api/current/scala/actors/scheduler/ResizableThreadPoolScheduler.html
Good luck
EDIT
Check out this piece of code using futures:
import scala.actors.Futures._
object FibFut {
def fib(i: Int): Int = if (i < 2) 1 else fib(i - 1) + fib(i - 2)
def main(args: Array[String]) {
val fibs = for (i <- 0 to 42) yield future { fib(i) }
for (future <- fibs) println(future())
}
}
It showcases a very good point about futures, namely that you decide in which order to receive the results (as opposed to the normal mailbox-system which employs a fifo-system i.e. the fastest actor sends his result first).
For any significant project, I generally have a supervisor actor, a collection of worker actors each of which can do any work necessary, and a large number of pieces of work to do. Even though I do this fairly often, I've never put it in a (personal) library because the operations end up being so different each time, and the overhead is pretty small compared to the whole coding project.
Be aware of actor starvation if you end up utilizing the general actor threadpool. I ended up simply using my own algorithm-task-owned threadpool to handle the parallelization of a long-running, concurrent task.
The upcoming Scala 2.9 is expected to include parallel data structures which should automatically handle this for some uses. While it does not use Actors, it may be something to consider for your problem.
While this feature was originally slated for 2.8, it has been postponed until the next major release.
A presentation from the last ScalaDays is here:
http://days2010.scala-lang.org/node/138/140