Lets say I have 5 Microservices and each microservice has 3 instances each. To deploy these microservices Do we need 15 different servers to deploy each Microservice ???
So In large scale application Let's say i have 100 Microservice and each microservice has 3 instance running in that case i need 300 servers to deploy each microservice's instances??
Please correct me on this
There is nothing like that 1 MicroService Instance = 1 Physical Server.
Microservice means that service only knows about its presense and its own data.
If some other service want to give some task to another service they have to call that service via endpoint for example Http or via bus.
By saying this you can have a one big server and that can have all the services.
If you want all the services belong to one instance or for one customer can be in one server, it is also possible.
In this area, you have to compute how much resource required by each service and its instance and that will be the driving factor in deciding this strategy.
I have a stateless service that pulls messages from an Azure queue and processes them. The service also starts some threads in charge of cleanup operations. We recently ran into an issue where these threads which ideally should have been killed when the service shuts down continue to remain active (definitely a bug in our service shutdown process).
Further looking at logs, it seemed that, the RunAsync methods cancellation token received a cancellation request, and later within the same process a new instance of the stateless service that was registered in ServiceRuntime.RegisterServiceAsync was created.
Is this expected behavior that service fabric can re-use the same process to start a new instance of the stateless service after shutting down the current instance.
The service fabric documentation https://learn.microsoft.com/en-us/azure/service-fabric/service-fabric-hosting-model does seem to suggest that different services can be hosted on the same process, but I could not find the above behavior being mentioned there.
In the shared process model, there's one process per ServicePackage instance on every node. Adding or replacing services will reuse the existing process.
This is done to save some (process-level) overhead on the node that runs the service, so hosting is more cost-efficient. Also, it enables port sharing for services.
You can change this (default) behavior, by configuring the 'exclusive process' mode in the application manifest, so every replica/instance will run in a separate process.
<Service Name="VotingWeb" ServicePackageActivationMode="ExclusiveProcess">
As you mentioned, you can monitor the CancellationToken to abort the separate worker threads, so they can stop when the service stops.
More info about the app model here and configuring process activation mode.
We are developing a microservice based system that is orchestrated using Kubernetes. Part of our use case is supplying our clients an On-Premise installation where they receive an Image (VMDK / QCOW2) with all the system deployed.
One of our main challenges is handling the update process of such system, currently the plan is to have an API endpoint that will receive an encrypted and signed package that will contain all the images and a certain update shell script. The API endpoint will start an asynchronous process that will extract the images and execute the shell script that eventually should call the Kubernetes to update all the images with the new code.
The question is where this API endpoint should be defined?
Be in a special "Maintenance" service that will be outside of the Kubernetes and control it, this service will be updated last in case it's code should be also updated.
Be part of one of the microservices containers that run inside Kubernetes - but then this image can be part of the updated images so any API that should return the update status can be un-available
What is the common way to export an interface to System Update or System Deployment wizard processes?
Thanks!
Consider a scenario where I have a watcher-service which is registered in consul. In this watcher service, I want to trigger some emails based on the behaviour of other services i.e. when other services are up, when a new service is added and when a running service is down.
My question is how can I subscribe to the events of other services.
One way I got is to use a scheduler and keep hitting consulClient.agentServices but this seems not an optimal way. I am hoping that I should be able to add a listener / watcher which invoke method which inturn tells watcher-service which service is down/added.
Looking for solutions which are more specific to spring cloud consul, but all hints are warmly welcome.
I'm a newbie in Cloud Foundry. In following the reference application provided by Predix (https://www.predix.io/resources/tutorials/tutorial-details.html?tutorial_id=1473&tag=1610&journey=Connect%20devices%20using%20the%20Reference%20App&resources=1592,1473,1600), the application consisted of several modules and each module is implemented as micro service.
My question is, how do these micro services talk to each other? I understand they must be using some sort of REST calls but the problem is:
service registry: Say I have services A, B, C. How do these components 'discover' the REST URLs of other components? As the component URL is only known after the service is pushed to cloud foundry.
How does cloud foundry controls the components dependency during service startup and service shutdown? Say A cannot start until B is started. B needs to be shutdown if A is shutdown.
The ref-app 'application' consists of several 'apps' and Predix 'services'. An app is bound to the service via an entry in the manifest.yml. Thus, it gets the service endpoint and other important configuration information via this binding. When an app is bound to a service, the 'cf env ' command returns the needed info.
There might still be some Service endpoint info in a property file, but that's something that will be refactored out over time.
The individual apps of the ref-app application are put in separate microservices, since they get used as components of other applications. Hence, the microservices approach. If there were startup dependencies across apps, the CI/CD pipeline that pushes the apps to the cloud would need to manage these dependencies. The dependencies in ref-app are simply the obvious ones, read-on.
While it's true that coupling of microservices is not in the design. There are some obvious reasons this might happen. Language and function. If you have a "back-end" microservice written in Java used by a "front-end" UI microservice written in Javascript on NodeJS then these are pushed as two separate apps. Theoretically the UI won't work too well without the back-end, but there is a plan to actually make that happen with some canned JSON. Still there is some logical coupling there.
The nice things you get from microservices is that they might need to scale differently and cloud foundry makes that quite easy with the 'cf scale' command. They might be used by multiple other microservices, hence creating new scale requirements. So, thinking about what needs to scale and also the release cycle of the functionality helps in deciding what comprises a microservice.
As for ordering, for example, the Google Maps api might be required by your application so it could be said that it should be launched first and your application second. But in reality, your application should take in to account that the maps api might be down. Your goal should be that your app behaves well when a dependent microservice is not available.
The 'apps' of the 'application' know about each due to their name and the URL that the cloud gives it. There are actually many copies of the reference app running in various clouds and spaces. They are prefaced with things like Dev or QA or Integration, etc. Could we get the Dev front end talking to the QA back-end microservice, sure, it's just a URL.
In addition to the aforementioned, etcd (which I haven't tried yet), you can also create a CUPS service 'definition'. This is also a set of key/value pairs. Which you can tie to the Space (dev/qa/stage/prod) and bind them via the manifest. This way you get the props from the environment.
If micro-services do need to talk to each other, generally its via REST as you have noticed.However microservice purists may be against such dependencies. That apart, service discovery is enabled by publishing available endpoints on to a service registry - etcd in case of CloudFoundry. Once endpoint is registered, various instances of a given service can register themselves to the registry using a POST operation. Client will need to know only about the published end point and not the individual service instance's end point. This is self-registration. Client will either communicate to a load balancer such as ELB, which looks up service registry or client should be aware of the service registry.
For (2), there should not be such a hard dependency between micro-services as per micro-service definition, if one is designing such a coupled set of services that indicates some imminent issues such as orchestrating and synchronizing. If such dependencies do emerge, you will have rely on service registries, health-checks and circuit-breakers for fall-back.