I'm looking into headless CMS's eg. Netlify, Strapi, Sanity. However none of them seem to have functionality to handle managing hierarchical data. Am I missing something? can people let me know how they handle hierarchical data in any of the above mentioned CMS's.
You are talking about a database model. Hierarchical model is achievable in every CMS's you mentioned.
For example you could declare Employee and Computer objects. Then you just need to add a relation between those two. In Strapi for example you just have to add a relation field in Employee that says Employee have one Computer
Related
I am new to domain driven design and trying to learn and implement in my project. My project structure up till now similar to this.
Maintainance Folder Maintainance.Data(Class
Library) Maintainance.Domain(Class Library)
Maintainance.Domin.Tests(test project)
MovieBooking Folder MovieBooking.Data(Class
Library) MovieBooking.Domain(Class Library)
MovieBooking.Domain.Tests(test project)
SharedKernel Common things
Web Application MovieBooking MVC Web
Application(which have reference to MovieBooking Domain)
In Maintainance boundned context I am keeping all CRUD, GetAll type things for say Movie, Country, Category, Subcategory entities in Maintainance DBContext.
Now in MovieBooking data layer I will also need to use these entities (mostly to display name or dropdown fills in view, kind of subset needed - not all properties needed, only few like Id, name)
There are few ways I can access this entities in Movie booking Bounded Context
Via web services - Need to create web api for common entities like Movie,Country,Category,Subcategory and call web api in web project (to fill Dropdowns or get name from entities)
Via Reference Context (Seperate Dbcontext) - Need to configure Dbset and then map a database view (with only require fields) to Dbset
Example :
modelBuilder.Entity().ToTable(ViewName);
For (1) it can be long term implmentation solution for me
(2) I have to create view (with only few properties) for each require table and it will increase my number of views in my DB drastically as I have enterprise level application.
Is there any other way I can achieve this? Anything I am missing in DDD to look for ?
Option 2, while it will save you time, is actually a very bad idea from the DDD perspective as it allows for violations of the transactional boundary guarantees that each aggregate is meant to enforce\represent.
Option 1 seems a better option, although there are still quite a bit of wiggle room for interpretation based on your brief description of your proposed solution. If I understood correctly, it is generally recommended to follow the below:
Do not expose your aggregate state directly since this exposes internals and increases coupling. Simple create meaningful DTO's and use something like Automapper to map your Aggregates to DTO's easilly and with little effort before sending it over.
Have a duplicate of the DTO definition in your client. This will reduce coupling and allow for easier deployments.
I strongly recommend reading the DDD orange book although I have to say that I cannot recall specifically on which chapter this is discussed. You will also benefit a lot by reading about hexagonal architecture (and I would search for that term in the orange book to find more info about your question).
There is actually one alternative that I can think of: if you're publishing events from your BC's you can create a workflow to translate the domain events to "public" events and then in the other BC listen for the public events that you need to and store the data that you need somewhere inside there. The difficulty of this ranges from very easy to quite problematic depending on your infrastructure. Be aware that it is not a very good idea to re-use your domain events for transmitting data to other BC's since this closely couples the two BC's.
I hope this helps. Please do not hesitate to elaborate if I did not understood the question well enough.
I'm looking at building an application using Play. Imagine a typical eCommerce domain model: Customer, Order, Order Line Item, Product.
In investigating various options for persistence the recommendation seems to be to avoid ORM layers in Scala and use a different abstraction, such as Slick.
Where I am stuck is that with an ORM I could pass a single "Order" object to my view, which could then use existing relationships to pull related information from the Customer, OrderLines, and Products. With Slick, I'm currently passing a tuple of (Order, Customer, Seq[(OrderLine, Product)]) to the view to provide the same information. If you start to complicate the model a bit more, say with an Address on the customer object, it gets very messy quickly.
Is this the recommended approach or am I missing something? I've found several Play-Slick example applications, but they just have 1 or 2 entities, so they don't really address the issue I bring up here.
Have a look at the Slick-Examples, especially: This one
If you implemented your classes correctly you should be able to access either Customer-object via the Order-object or vice-versa (for example order.customer.name or something like that to access the customer's Name).
I am working on developing a set of assemblies that encapsulate parts of our domain that will be shared by many applications. Using the example of an order management system, one such assembly will contain all of the core operations an application can perform to/with an order. We are applying a simple version of CQS/CQRS so that all operations that change the state of the "system" are represented as public commands, such as CancelOrderCommand, ShipOrderCommand and CreateORderCommand. The command handlers are internal to the assembly.
The question I am struggling to answer is how to best expose the read model to consuming code?
The read model will be used by consuming code to perform queries. I don't know how all of the ways the read model will be used so the interface needs to be flexible to allow any query.
What complicates it for me is that I not only need to expose my aggregate root but there are also several "lookup" lists of related data that client applications may use. For example, each order has an associated OrderType which is data-driven (i.e., not an enum) and contains several properties that will drive some of our business rules that control what operations can/cannot be performed, etc. It is easy inside my module to manage this relationship; however, a client application that allows order creation will most likely need to display the list of possible OrderTypes to the user. As a result, I need to not only expose the list of Order aggregates but the supporting list of OrderTypes (and other lookup lists) from my read model.
How is this typically done?
I'm not sure what else to explain that will help trigger a solution, so please ask away...
I have never seen a CQRS based implementation expose a full dataset for ad-hoc querying so this is an interesting situation! In a typical CQRS scenario you would expose very specific queries because you may want to raise events when they are called (for caching for example - see this post for more details on that).
However since this is your design, let's not worry about "typical" or "correct" CQRS, I guess you just need a solution! One of the best new mechanisms for exposing data for flexible querying I have seen is the Open Data Protocol (OData). It will allow consumers to implement their own filtering, sorting and paging over a data source you expose.
Most implementations of this seem to deal with relational data. If you are dealing with a relational data source then OData might be a nice way to go. I suspect by your comment of "expose my aggregate root" that you might be using a document database? If so, there is one example I have seen of OData services on top of MongoDB: http://bloggingabout.net/blogs/vagif/archive/2012/10/11/mongodb-odata-provider-now-supports-arrays-and-nested-collections.aspx.
I hope that helps, OData is definitely worth looking into. It seems to be growing really quickly and is getting good support on both server and client technology platforms.
I'm starting to work with graph databases, and in my team we've started modeling a graph for our software. The problem comes when we try to "document" the model, to see the structure of our database. With SQL databases you only have to look at the SQL schema.
We've spent some time reading neo4j blogs and documentation, but we've seen that the usual way to show how a graph works is with a minimal graph showing some sample data (Random samples: sample1, sample2, etc). That's great for educational purposes, but we'd love to be able to do it in a little more formal way. We'd like to set what kind of node can relate with another one, and with what kind of relationship, that kind of stuff.
Using Spring you can wrap the graph with classes, but it's very specific to Java and OO model, and we're working with Erlang. We're looking for some kind of formal language (SQL Schema equivalent), or a E-R model equivalent, or something like that.
One way to do this is to put the "meta-model" of your graph (a type network) in the graph as well and then connect the instances (nodes) to their meta-model-type. So you can visualize the meta-model using the graph visualization and at the same time use the meta-model to enforce additional constraints (by storing constraint information in the meta-model and using that when the actual model is updated) and also use the type-nodes of the meta-model to quickly access all "instance"-nodes of this type.
What is the domain you want to model?
A quick idea - could you use a subset of UML? Graph modeling seems to be closer to the domain, so maybe that's reasonable.
What we do is a generalization of the "example data" approach, where we include cardinality on each side of a relationship, as well as type and direction. I also often include a node "type" in the diagram (or some other specification of it's role/relation to domain models) instead of example data, and of course note the expected properties, their types, and whether they are optional. It's less than formal, but has served well so far.
I'm working with a large hierarchical data set in sql server - modelled using the standard "EntityID, ParentID" kind of approach. There are about 25,000 nodes in the whole tree.
I often need to access subtrees of the tree, and then access related data that hangs off the nodes of the subtree. I built a data access layer a few years ago based on table-valued functions, using recursive queries to fetch an arbitrary subtree, given the root node of the subtree.
I'm thinking of using Entity Framework, but I can't see how to query hierarchical data like
this. AFAIK there is no recursive querying in Linq, and I can't expose a TVF in my entity data model.
Is the only solution to keep using stored procs? Has anyone else solved this?
Clarification: By 25,000 nodes in the tree I'm referring to the size of the hierarchical dataset, not to anything to do with objects or the Entity Framework.
It may the best to use a pattern called "Nested Set", which allows you to get an arbitrary subtree within one query. This is especially useful if the nodes aren't manipulated very often: Managing hierarchical data in MySQL.
In a perfect world the entity framework would provide possibilities to save and query data using this data pattern.
Everything IS possible with Entity Framework but you have to hack and slash your way in to it. The database I am currently working against has too many "holder tables" since Points for instance is shared with both teams and users. Both users and teams can also have a blog.
When you say 25 000 nodes do you mean navigational properties? If so I think it could be tricky to get the data access in place. It's not hard to navigate, search etc with entity framework but I tend to model on paper then create the database based on how I want to navigate while using entity framework. Sounds like you don't have that option.
Thanks for these suggestions.
I'm beginning to realise that the answer is to remodel the data in the database - either along the lines of nested sets as Georg suggests, or maybe a transitive closure table, which I've just come across.
That way, I'm hoping to get two key benefits:
a) faster querying aginst arbitrary subtrees
b) a data model which no longer requires recursive querying - so perhaps bringing it within easy reach of the Entity Framework!
It's always amazing how so often the right answer to a difficult problem is not to answer it, but to do something else instead!