How to expose read model from shared module - cqrs

I am working on developing a set of assemblies that encapsulate parts of our domain that will be shared by many applications. Using the example of an order management system, one such assembly will contain all of the core operations an application can perform to/with an order. We are applying a simple version of CQS/CQRS so that all operations that change the state of the "system" are represented as public commands, such as CancelOrderCommand, ShipOrderCommand and CreateORderCommand. The command handlers are internal to the assembly.
The question I am struggling to answer is how to best expose the read model to consuming code?
The read model will be used by consuming code to perform queries. I don't know how all of the ways the read model will be used so the interface needs to be flexible to allow any query.
What complicates it for me is that I not only need to expose my aggregate root but there are also several "lookup" lists of related data that client applications may use. For example, each order has an associated OrderType which is data-driven (i.e., not an enum) and contains several properties that will drive some of our business rules that control what operations can/cannot be performed, etc. It is easy inside my module to manage this relationship; however, a client application that allows order creation will most likely need to display the list of possible OrderTypes to the user. As a result, I need to not only expose the list of Order aggregates but the supporting list of OrderTypes (and other lookup lists) from my read model.
How is this typically done?
I'm not sure what else to explain that will help trigger a solution, so please ask away...

I have never seen a CQRS based implementation expose a full dataset for ad-hoc querying so this is an interesting situation! In a typical CQRS scenario you would expose very specific queries because you may want to raise events when they are called (for caching for example - see this post for more details on that).
However since this is your design, let's not worry about "typical" or "correct" CQRS, I guess you just need a solution! One of the best new mechanisms for exposing data for flexible querying I have seen is the Open Data Protocol (OData). It will allow consumers to implement their own filtering, sorting and paging over a data source you expose.
Most implementations of this seem to deal with relational data. If you are dealing with a relational data source then OData might be a nice way to go. I suspect by your comment of "expose my aggregate root" that you might be using a document database? If so, there is one example I have seen of OData services on top of MongoDB: http://bloggingabout.net/blogs/vagif/archive/2012/10/11/mongodb-odata-provider-now-supports-arrays-and-nested-collections.aspx.
I hope that helps, OData is definitely worth looking into. It seems to be growing really quickly and is getting good support on both server and client technology platforms.

Related

Domain Driven Design - Shared entities across bounded contexts

I am new to domain driven design and trying to learn and implement in my project. My project structure up till now similar to this.
Maintainance Folder Maintainance.Data(Class
Library) Maintainance.Domain(Class Library)
Maintainance.Domin.Tests(test project)
MovieBooking Folder MovieBooking.Data(Class
Library) MovieBooking.Domain(Class Library)
MovieBooking.Domain.Tests(test project)
SharedKernel Common things
Web Application MovieBooking MVC Web
Application(which have reference to MovieBooking Domain)
In Maintainance boundned context I am keeping all CRUD, GetAll type things for say Movie, Country, Category, Subcategory entities in Maintainance DBContext.
Now in MovieBooking data layer I will also need to use these entities (mostly to display name or dropdown fills in view, kind of subset needed - not all properties needed, only few like Id, name)
There are few ways I can access this entities in Movie booking Bounded Context
Via web services - Need to create web api for common entities like Movie,Country,Category,Subcategory and call web api in web project (to fill Dropdowns or get name from entities)
Via Reference Context (Seperate Dbcontext) - Need to configure Dbset and then map a database view (with only require fields) to Dbset
Example :
modelBuilder.Entity().ToTable(ViewName);
For (1) it can be long term implmentation solution for me
(2) I have to create view (with only few properties) for each require table and it will increase my number of views in my DB drastically as I have enterprise level application.
Is there any other way I can achieve this? Anything I am missing in DDD to look for ?
Option 2, while it will save you time, is actually a very bad idea from the DDD perspective as it allows for violations of the transactional boundary guarantees that each aggregate is meant to enforce\represent.
Option 1 seems a better option, although there are still quite a bit of wiggle room for interpretation based on your brief description of your proposed solution. If I understood correctly, it is generally recommended to follow the below:
Do not expose your aggregate state directly since this exposes internals and increases coupling. Simple create meaningful DTO's and use something like Automapper to map your Aggregates to DTO's easilly and with little effort before sending it over.
Have a duplicate of the DTO definition in your client. This will reduce coupling and allow for easier deployments.
I strongly recommend reading the DDD orange book although I have to say that I cannot recall specifically on which chapter this is discussed. You will also benefit a lot by reading about hexagonal architecture (and I would search for that term in the orange book to find more info about your question).
There is actually one alternative that I can think of: if you're publishing events from your BC's you can create a workflow to translate the domain events to "public" events and then in the other BC listen for the public events that you need to and store the data that you need somewhere inside there. The difficulty of this ranges from very easy to quite problematic depending on your infrastructure. Be aware that it is not a very good idea to re-use your domain events for transmitting data to other BC's since this closely couples the two BC's.
I hope this helps. Please do not hesitate to elaborate if I did not understood the question well enough.

Structuring nested rest API

I'm writing an API with spring boot, trying to keep it restful but the structure is quite nested. So say I have:
/api/examboard/{ebid}/qualification/{qid}/subject/{sid}/module/{mid}/
I have a controller for every noun that will take in all Id's, the problem with this is that I don't really need an ebid or a qid for modules, they only really need to be concerned with subjects most of the time. The mapping between them all is quite simple. An examboard will have many qualifications, a qualification will have many subjects etc....
Now the problem is say I go for a simpler API design where I only need the parent Id so the Subject controller will also have:
api/subject/{sid}/module
then I need to include multiple services in my controller based on the way JPA works. As I need to include SubjectEntity based calls and ModuleEntity based calls. However I want to maintain a one to one relationship between my controllers/services and services/repositories. This is why I opted for the longer url as I've mentioned above, but it does seem like overkill. Does anyone have any advice on how I should structure an API like this, most examples are quite small and don't really fit.
Without knowing more about your models and the relations between them, this answer will have to stay a bit diffuse.
First of all - "it depends". I know, but it really does. The way you should design an API depends heavily on your use cases that will define required access patterns. Do you often need all modules for a subject? Then introduce /subjects/{sid}/modules, if you need the details for a module of a subject in a qualification in an examboard - by all means have a /examboards/{ebid}/qualifications/{qid}/subjects/{sid}/modules/{mid}
As you say there are many relations between your entities. That is fine, but it does not mean that you need your API to capture each of these relations in a dedicated endpoint. You should distiguish between retrieving and modifying entities here. Find below examples for certain operations you might want to have (not knowing your models, this may not apply - let's consider this an illustration)
Retrieve qualifications for an examboard
GET /examboards/{ebid}/qualifications plain and simple
GET /qualifications?ebid={ebid} if you feel you might need sophisticated filtering later on
or create a new qualitication for an examboard
POST /examboards/{ebid}/qualifications with the details submitted in the body
POST /qualifications with the details submitted in the body and making the associated examboard ebid part of the submitted data
or update an existing qualification
PUT /qualifications/{qid} (if this operation is idempotent)
POST /qualifications/{qid} (if it should not be considered idempotent)
or delete qualifications
DELETE /qualifications/{qid} deletes entities, cascade-deletes associations
DELETE /examboards/{ebid}/qualifications clears all qualifications from an examboard, without actually deleting the qualification entities
There are certainly more ways to let an API do all these things, but this should demonstrate that you need to think of your use cases first and design your API around them.
Please note the pluralisation of collection resources in the previous examples. This comes down to personal preference, but I tends to follow the argumentation of Sam Ruby in RESTful Web Services (available as PDF) that collections should be first-class citizens in an API
Usually, there should not be a reason to have 1:1:1 relationships between controllers, services and repositories. Usually, this is not even possible. Now, I don't know the reason why you might want to do this, but following through with this will force you to put a lot of logic into your database queries and models. While this (depending on your setup and skills) may or may not be easily testable, it certainly shifts the required test types from unit (simpler, usually faster, more fine-grained) to integration tests (require more setup, more complex, usually slower), when instead of having the bulk of your business logic in your services you put them into many joins and subselects in your repositories.
I will only address your REST API structure question.
As you already pointed out
The problem with this is that I don't really need an ebid or a qid for modules, they only really need to be concerned with subjects most of the time
You need to think of your entities as resources if your entity can stand for itself give it its own top level resource. If instead your entity exists only as a part of another entity build a subresource below its parent. This should correspond with the association type aggregation and composition in your object model design.
Otherwise every entity that is part of a many relationship should also be accessible via a subresource on the other side of the relationship.
As I understood you you have a OneToMany relationship between examboard and qualification so we get:
api/examboards/{eid}/qualifications
api/qualifications/{qid}/examboard
Yo could also remove the examboard subresource and include it in the qualification response.
For ManyToMany realtionships you need two subresources:
api/foos/{fid}/bars
api/bars/{bid}/foos
And another resource to manipulate the relationship itself.
api/foosToBars/{fid}+{bid}
Or likewise.

Using ViewModels instead DTOs as the result of a CQRS query

Reading a SO question, I realized that my Read services could provide some smarter object like ViewModels instead plain DTOs. This makes me reconsider what information should be provided by the objects returned by the Read Services
Before, using just DTOs, my Read Service just made flat view mapping of a database query into hash like structure with minimum normalization and no behavior.
However I tend to think of a ViewModel as something "smarter" that can have generated information not provided by the database, like status icon, calculated values, reformatted values, default values, etc.
I am starting to see that the construction of some ViewModel objects might get more complicated and has potential downsides if I made my generic ReadServiceInterface return ViewModels only:
(1) Should I plan some design restriction for the ViewModels returned by my CQRS? Like making sure that their construction is almost as fast as a plain DTO?
(2) DTOs by nature are easily serialized and ready to be sent to an external system in a SOA architecture or embedded into a message. Does this mean that using ViewModels will have a negative impact on my architecture?
(3) Which type of ViewModels should I keep outside my Read Services?
(4) Should I expect all ViewModels to be retrieved from Read Services?
In the past I implemented some ViewModels that needed more than one query. In a CQRS I suppose, that is a design smell, since everything they provide, should be in only one query.
I am starting a new project, where I thought that any query will return either aggregate objects or DTOs. Since now ViewModels come into play. I am wondering:
(5) Should I plan that queries within my architecture will yield two type of objects (ViewModels+Aggregates) or three (+DTO)?
View Models (VM) serve a single master: the View. We're usually consider the VM a pretty dumb object so in this regard, there's no technical difference between a VM and a DTO, only their purpose and semantics are different.
How you build a VM is an implementation detail. Some VM are pre generated and stored in a VM repository. Others are built in real-time by a service (or a query handler) either by querying the db directly or querying other repos/services then assembling the results. There's no right or wrong and no rules about how to do it. It comes down to preference.
In CQRS the important part is separation of commands from queries i.e more than one model. There's no rule about how many queries you should do or if you should return a view model or dto. As long as you have at least one read model dedicated for queries, it's CQRS.
Don't let technicalities complicate your design. Proper design is more about high level structure and not low level implementation. Use CQRS because having a read model simplifies your app, not for other reasons. Aim for simplification and clean code, not for rigid rules that dictate a 'how to' recipe.

CQRS read model side - normalized tables

I have been reading about Command Query Responsibility Segregation (CQRS) and how this pattern would suit our current applications.
When it comes to the read model I am well aware of the concepts:
"separating read and write data model", "flat denormalized data returned by the thin read layer". In most cases we are stuck with the same database(the same read/write data model), running on SQL Server with normalized tables, with common layered application on top of it.
So, is it any value of applying CQRS on this kind of scenario?
If so, what would it be when it comes to the read model side?
Another question that hits my mind is MVC application requesting information from my thin read layer that expose flattened out views. Data exposed still need to be structured(aggragated) before presented to the user, or am I wrong?
Best regards
CQRS doesn't need to have a flattened read model; that is a benefit that CQRS can allow you to provide, but it is neither required nor a key part of the approach.
CQRS is about separation (or segregation if you follow the name). It is the Command Query Separation principle on steroid (in my opinion). The benefits that it provides you (off the top of my head) are:
separation of your read operations from your write operations;
communication between layers via messaging (e.g. commands, events), so that your layers are clean;
separation within your layers, applying the Single Responsibility Principle (e.g. your domain applies business logic, your command handles route commands, your denormalizers or event handlers (or whatever you call them) persist information to your read store, etc.)
allows you to have team members work on different parts of your application without hard dependencies between them;
etc.
So if those things above are important to you or something you want to strive for (and your application's design supports implementing CQRS), then CQRS provides benefit and value to you.
There are many benefits to CQRS. It's not the right solution for every problem, but when the stars align, it's a nice approach to your problem (even if you don't have a denormalized read store, or an event store, or an async model, etc.).
I hope this helps!
I've fought with multiple joins so many times in my career that when a structure like CQRS and ES comes along and offers a clean way to simplify the read side, I jumped at it. The nice thing is that you can get many of the benefits without necessarily implementing all the elements often associated with CQRS and ES. Just separating command from queries has the benefit of simplifying your code. However, when you do start using a de-normaliser to build out read models for you application you suddenly realise how simple, clean and performant your app can be.
If it helps to see 'how' this de-normalisation works take a look at this post (it comes with a code sample to take a gander at): How to build a master details view with CQRS and ES. I hope you find this helpful.
Applying CQRS over the same (say) third normal form database can still give you value on the read side if it allows you to stop projecting read models from domain objects.
This also allows you to better specialise your domain to (I assume) transaction processing, meaning many relationships may not be necessary.

How do I use entity framework with hierarchical data?

I'm working with a large hierarchical data set in sql server - modelled using the standard "EntityID, ParentID" kind of approach. There are about 25,000 nodes in the whole tree.
I often need to access subtrees of the tree, and then access related data that hangs off the nodes of the subtree. I built a data access layer a few years ago based on table-valued functions, using recursive queries to fetch an arbitrary subtree, given the root node of the subtree.
I'm thinking of using Entity Framework, but I can't see how to query hierarchical data like
this. AFAIK there is no recursive querying in Linq, and I can't expose a TVF in my entity data model.
Is the only solution to keep using stored procs? Has anyone else solved this?
Clarification: By 25,000 nodes in the tree I'm referring to the size of the hierarchical dataset, not to anything to do with objects or the Entity Framework.
It may the best to use a pattern called "Nested Set", which allows you to get an arbitrary subtree within one query. This is especially useful if the nodes aren't manipulated very often: Managing hierarchical data in MySQL.
In a perfect world the entity framework would provide possibilities to save and query data using this data pattern.
Everything IS possible with Entity Framework but you have to hack and slash your way in to it. The database I am currently working against has too many "holder tables" since Points for instance is shared with both teams and users. Both users and teams can also have a blog.
When you say 25 000 nodes do you mean navigational properties? If so I think it could be tricky to get the data access in place. It's not hard to navigate, search etc with entity framework but I tend to model on paper then create the database based on how I want to navigate while using entity framework. Sounds like you don't have that option.
Thanks for these suggestions.
I'm beginning to realise that the answer is to remodel the data in the database - either along the lines of nested sets as Georg suggests, or maybe a transitive closure table, which I've just come across.
That way, I'm hoping to get two key benefits:
a) faster querying aginst arbitrary subtrees
b) a data model which no longer requires recursive querying - so perhaps bringing it within easy reach of the Entity Framework!
It's always amazing how so often the right answer to a difficult problem is not to answer it, but to do something else instead!