Can the Kafka Connect JDBC Sink dump raw data? - apache-kafka

Partly for testing and debugging but also to work around an issue we are seeing in a topic where we have are unable to change the producer I would like to be able to store the value as a string in a CLOB in a database table.
I have this working as a Java based consumer but I am looking at whether this could be achieved using Kafka Connect.
Everything I have read says you need a schema with the reasoning being that how else would it know how to process the data into columns (which makes sense) but I don't want to do any processing of the data (which could be JSON but might just be text) I just want to treat the whole value as a string and load it into one column.
Is there any way this can be done within the Connect config or am I looking at adding extra processing to update the message (in which case the Java client is probably going to end up being simpler)

No, the JDBC Sink connector requires a schema to work. You could modify the source code to add in this behaviour.
I would personally try to stick with Kafka Connect for streaming data to a database since it does all the difficult stuff (scale out, restarts, etc etc etc) very well. Depending on the processing that you're talking about, it could well be that Single Message Transform would be very applicable, since they fit into the Kafka Connect pipeline. Or for more complex processing, Kafka Streams or ksqlDB.

Related

Kafka - different configuration settings

I am going through the documentation, and there seems to be there are lot of moving with respect to message processing like exactly once processing , at least once processing . And, the settings scattered here and there. There doesnt seem a single place that documents the properties need to be configured rougly for exactly once processing and atleast once processing.
I know there are many moving parts involved and it always depends . However, like i was mentioning before , what are the settings to be configured atleast to provide exactly once processing and at most once and atleast once ...
You might be interested in the first part of Kafka FAQ that describes some approaches on how to avoid duplication on data production (i.e. on producer side):
Exactly once semantics has two parts: avoiding duplication during data
production and avoiding duplicates during data consumption.
There are two approaches to getting exactly once semantics during data
production:
Use a single-writer per partition and every time you get a network
error check the last message in that partition to see if your last
write succeeded
Include a primary key (UUID or something) in the
message and deduplicate on the consumer.
If you do one of these things, the log that Kafka hosts will be
duplicate-free. However, reading without duplicates depends on some
co-operation from the consumer too. If the consumer is periodically
checkpointing its position then if it fails and restarts it will
restart from the checkpointed position. Thus if the data output and
the checkpoint are not written atomically it will be possible to get
duplicates here as well. This problem is particular to your storage
system. For example, if you are using a database you could commit
these together in a transaction. The HDFS loader Camus that LinkedIn
wrote does something like this for Hadoop loads. The other alternative
that doesn't require a transaction is to store the offset with the
data loaded and deduplicate using the topic/partition/offset
combination.

Avoid Data Loss While Processing Messages from Kafka

Looking out for best approach for designing my Kafka Consumer. Basically I would like to see what is the best way to avoid data loss in case there are any
exception/errors during processing the messages.
My use case is as below.
a) The reason why I am using a SERVICE to process the message is - in future I am planning to write an ERROR PROCESSOR application which would run at the end of the day, which will try to process the failed messages (not all messages, but messages which fails because of any dependencies like parent missing) again.
b) I want to make sure there is zero message loss and so I will save the message to a file in case there are any issues while saving the message to DB.
c) In production environment there can be multiple instances of consumer and services running and so there is high chance that multiple applications try to write to the
same file.
Q-1) Is writing to file the only option to avoid data loss ?
Q-2) If it is the only option, how to make sure multiple applications write to the same file and read at the same time ? Please consider in future once the error processor
is build, it might be reading the messages from the same file while another application is trying to write to the file.
ERROR PROCESSOR - Our source is following a event driven mechanics and there is high chance that some times the dependent event (for example, the parent entity for something) might get delayed by a couple of days. So in that case, I want my ERROR PROCESSOR to process the same messages multiple times.
I've run into something similar before. So, diving straight into your questions:
Not necessarily, you could perhaps send those messages back to Kafka in a new topic (let's say - error-topic). So, when your error processor is ready, it could just listen in to the this error-topic and consume those messages as they come in.
I think this question has been addressed in response to the first one. So, instead of using a file to write to and read from and open multiple file handles to do this concurrently, Kafka might be a better choice as it is designed for such problems.
Note: The following point is just some food for thought based on my limited understanding of your problem domain. So, you may just choose to ignore this safely.
One more point worth considering on your design for the service component - You might as well consider merging points 4 and 5 by sending all the error messages back to Kafka. That will enable you to process all error messages in a consistent way as opposed to putting some messages in the error DB and some in Kafka.
EDIT: Based on the additional information on the ERROR PROCESSOR requirement, here's a diagrammatic representation of the solution design.
I've deliberately kept the output of the ERROR PROCESSOR abstract for now just to keep it generic.
I hope this helps!
If you don't commit the consumed message before writing to the database, then nothing would be lost while Kafka retains the message. The tradeoff of that would be that if the consumer did commit to the database, but a Kafka offset commit fails or times out, you'd end up consuming records again and potentially have duplicates being processed in your service.
Even if you did write to a file, you wouldn't be guaranteed ordering unless you opened a file per partition, and ensured all consumers only ran on a single machine (because you're preserving state there, which isn't fault-tolerant). Deduplication would still need handled as well.
Also, rather than write your own consumer to a database, you could look into Kafka Connect framework. For validating a message, you can similarly deploy a Kafka Streams application to filter out bad messages from an input topic out into a topic to send to the DB

Synchronising transactions between database and Kafka producer

We have a micro-services architecture, with Kafka used as the communication mechanism between the services. Some of the services have their own databases. Say the user makes a call to Service A, which should result in a record (or set of records) being created in that service’s database. Additionally, this event should be reported to other services, as an item on a Kafka topic. What is the best way of ensuring that the database record(s) are only written if the Kafka topic is successfully updated (essentially creating a distributed transaction around the database update and the Kafka update)?
We are thinking of using spring-kafka (in a Spring Boot WebFlux service), and I can see that it has a KafkaTransactionManager, but from what I understand this is more about Kafka transactions themselves (ensuring consistency across the Kafka producers and consumers), rather than synchronising transactions across two systems (see here: “Kafka doesn't support XA and you have to deal with the possibility that the DB tx might commit while the Kafka tx rolls back.”). Additionally, I think this class relies on Spring’s transaction framework which, at least as far as I currently understand, is thread-bound, and won’t work if using a reactive approach (e.g. WebFlux) where different parts of an operation may execute on different threads. (We are using reactive-pg-client, so are manually handling transactions, rather than using Spring’s framework.)
Some options I can think of:
Don’t write the data to the database: only write it to Kafka. Then use a consumer (in Service A) to update the database. This seems like it might not be the most efficient, and will have problems in that the service which the user called cannot immediately see the database changes it should have just created.
Don’t write directly to Kafka: write to the database only, and use something like Debezium to report the change to Kafka. The problem here is that the changes are based on individual database records, whereas the business significant event to store in Kafka might involve a combination of data from multiple tables.
Write to the database first (if that fails, do nothing and just throw the exception). Then, when writing to Kafka, assume that the write might fail. Use the built-in auto-retry functionality to get it to keep trying for a while. If that eventually completely fails, try to write to a dead letter queue and create some sort of manual mechanism for admins to sort it out. And if writing to the DLQ fails (i.e. Kafka is completely down), just log it some other way (e.g. to the database), and again create some sort of manual mechanism for admins to sort it out.
Anyone got any thoughts or advice on the above, or able to correct any mistakes in my assumptions above?
Thanks in advance!
I'd suggest to use a slightly altered variant of approach 2.
Write into your database only, but in addition to the actual table writes, also write "events" into a special table within that same database; these event records would contain the aggregations you need. In the easiest way, you'd simply insert another entity e.g. mapped by JPA, which contains a JSON property with the aggregate payload. Of course this could be automated by some means of transaction listener / framework component.
Then use Debezium to capture the changes just from that table and stream them into Kafka. That way you have both: eventually consistent state in Kafka (the events in Kafka may trail behind or you might see a few events a second time after a restart, but eventually they'll reflect the database state) without the need for distributed transactions, and the business level event semantics you're after.
(Disclaimer: I'm the lead of Debezium; funnily enough I'm just in the process of writing a blog post discussing this approach in more detail)
Here are the posts
https://debezium.io/blog/2018/09/20/materializing-aggregate-views-with-hibernate-and-debezium/
https://debezium.io/blog/2019/02/19/reliable-microservices-data-exchange-with-the-outbox-pattern/
first of all, I have to say that I’m no Kafka, nor a Spring expert but I think that it’s more a conceptual challenge when writing to independent resources and the solution should be adaptable to your technology stack. Furthermore, I should say that this solution tries to solve the problem without an external component like Debezium, because in my opinion each additional component brings challenges in testing, maintaining and running an application which is often underestimated when choosing such an option. Also not every database can be used as a Debezium-source.
To make sure that we are talking about the same goals, let’s clarify the situation in an simplified airline example, where customers can buy tickets. After a successful order the customer will receive a message (mail, push-notification, …) that is sent by an external messaging system (the system we have to talk with).
In a traditional JMS world with an XA transaction between our database (where we store orders) and the JMS provider it would look like the following: The client sets the order to our app where we start a transaction. The app stores the order in its database. Then the message is sent to JMS and you can commit the transaction. Both operations participate at the transaction even when they’re talking to their own resources. As the XA transaction guarantees ACID we’re fine.
Let’s bring Kafka (or any other resource that is not able to participate at the XA transaction) in the game. As there is no coordinator that syncs both transactions anymore the main idea of the following is to split processing in two parts with a persistent state.
When you store the order in your database you can also store the message (with aggregated data) in the same database (e.g. as JSON in a CLOB-column) that you want to send to Kafka afterwards. Same resource – ACID guaranteed, everything fine so far. Now you need a mechanism that polls your “KafkaTasks”-Table for new tasks that should be send to a Kafka-Topic (e.g. with a timer service, maybe #Scheduled annotation can be used in Spring). After the message has been successfully sent to Kafka you can delete the task entry. This ensures that the message to Kafka is only sent when the order is also successfully stored in application database. Did we achieve the same guarantees as we have when using a XA transaction? Unfortunately, no, as there is still the chance that writing to Kafka works but the deletion of the task fails. In this case the retry-mechanism (you would need one as mentioned in your question) would reprocess the task an sends the message twice. If your business case is happy with this “at-least-once”-guarantee you’re done here with a imho semi-complex solution that could be easily implemented as framework functionality so not everyone has to bother with the details.
If you need “exactly-once” then you cannot store your state in the application database (in this case “deletion of a task” is the “state”) but instead you must store it in Kafka (assuming that you have ACID guarantees between two Kafka topics). An example: Let’s say you have 100 tasks in the table (IDs 1 to 100) and the task job processes the first 10. You write your Kafka messages to their topic and another message with the ID 10 to “your topic”. All in the same Kafka-transaction. In the next cycle you consume your topic (value is 10) and take this value to get the next 10 tasks (and delete the already processed tasks).
If there are easier (in-application) solutions with the same guarantees I’m looking forward to hear from you!
Sorry for the long answer but I hope it helps.
All the approach described above are the best way to approach the problem and are well defined pattern. You can explore these in the links provided below.
Pattern: Transactional outbox
Publish an event or message as part of a database transaction by saving it in an OUTBOX in the database.
http://microservices.io/patterns/data/transactional-outbox.html
Pattern: Polling publisher
Publish messages by polling the outbox in the database.
http://microservices.io/patterns/data/polling-publisher.html
Pattern: Transaction log tailing
Publish changes made to the database by tailing the transaction log.
http://microservices.io/patterns/data/transaction-log-tailing.html
Debezium is a valid answer but (as I've experienced) it can require some extra overhead of running an extra pod and making sure that pod doesn't fall over. This could just be me griping about a few back to back instances where pods OOM errored and didn't come back up, networking rule rollouts dropped some messages, WAL access to an aws aurora db started behaving oddly... It seems that everything that could have gone wrong, did. Not saying Debezium is bad, it's fantastically stable, but often for devs running it becomes a networking skill rather than a coding skill.
As a KISS solution using normal coding solutions that will work 99.99% of the time (and inform you of the .01%) would be:
Start Transaction
Sync save to DB
-> If fail, then bail out.
Async send message to kafka.
Block until the topic reports that it has received the
message.
-> if it times out or fails Abort Transaction.
-> if it succeeds Commit Transaction.
I'd suggest to use a new approach 2-phase message. In this new approach, much less codes are needed, and you don't need Debeziums any more.
https://betterprogramming.pub/an-alternative-to-outbox-pattern-7564562843ae
For this new approach, what you need to do is:
When writing your database, write an event record to an auxiliary table.
Submit a 2-phase message to DTM
Write a service to query whether an event is saved in the auxiliary table.
With the help of DTM SDK, you can accomplish the above 3 steps with 8 lines in Go, much less codes than other solutions.
msg := dtmcli.NewMsg(DtmServer, gid).
Add(busi.Busi+"/TransIn", &TransReq{Amount: 30})
err := msg.DoAndSubmitDB(busi.Busi+"/QueryPrepared", db, func(tx *sql.Tx) error {
return AdjustBalance(tx, busi.TransOutUID, -req.Amount)
})
app.GET(BusiAPI+"/QueryPrepared", dtmutil.WrapHandler2(func(c *gin.Context) interface{} {
return MustBarrierFromGin(c).QueryPrepared(db)
}))
Each of your origin options has its disadvantage:
The user cannot immediately see the database changes it have just created.
Debezium will capture the log of the database, which may be much larger than the events you wanted. Also deployment and maintenance of Debezium is not an easy job.
"built-in auto-retry functionality" is not cheap, it may require much codes or maintenance efforts.

Filter read access events in Debezium

We are using Debezium + PostgreSQL.
Notice that we get 4 types of events for create, read, update and delete - c, r, u and d.
The read type of event is unused for our application. Actually, I could not think of an use case for the 'r' events unless we are doing auditing or mirroring the activities of a transaction.
We are facing difficulties scaling & I suspect it is because of network getting hogged by read type of events.
How do we filter out those events in postgreSQL itself?
I got a clue from one of the contributors to use snapshot.mode. I guess something that has to be done when Debezium creates a snapshot. I am unable to figure out how to do that.
It is likely that your database has existed for some time and contains data and changes that have been purged from the logical decoding logs. If you then start using the Debezium PostgreSQL connector to start capturing changes into Kafka, the question becomes what a consumer of the events in Kafka should be able to see.
One scenario is that a consumer should be able to see events for all rows in the database, even those that existed prior to the start of CDC. For example, this allows a consumer to completely reproduce/replicate all of the existing data and keep that data in sync over time. To accomplish this, the Debezium PostgreSQL connector starts up can begin by creating a snapshot of the database contents before it starts capturing the changes. This is done atomically, so that even if the snapshot process takes a while to run, the connector will still see all of the events that occurred since the snapshot process was started. These events are represented as "read" events, since in effect the connector is simply reading the existing rows. However, they are identical to "insert" events, so any application could treat reads and inserts in the same way.
On the other hand, if consumers of the events in Kafka do not need to see events for all existing rows, then the connector can be configured to avoid the snapshot and to instead begin by capturing the changes. This may be useful in some scenarios where the entire database state need not be found in Kafka, but instead the goal is to simply capture the changes that are occurring.
The Debezium PostgreSQL connector will work either way, so you should use the approach that works for how you're consuming the events.

Oracle change-data-capture with Kafka best practices

I'm working on a project where we need to stream real-time updates from Oracle to a bunch of systems (Cassandra, Hadoop, real-time processing, etc). We are planing to use Golden Gate to capture the changes from Oracle, write them to Kafka, and then let different target systems read the event from Kafka.
There are quite a few design decisions that need to be made:
What data to write into Kafka on updates?
GoldenGate emits updates in a form of record ID, and updated field. These changes can be writing into Kafka in one of 3 ways:
Full rows: For every field change, emit the full row. This gives a full representation of the 'object', but probably requires making a query to get the full row.
Only updated fields: The easiest, but it's kind of a weird to work with as you never have a full representation of an object easily accessible. How would one write this to Hadoop?
Events: Probably the cleanest format ( and the best fit for Kafka), but it requires a lot of work to translate db field updates into events.
Where to perform data transformation and cleanup?
The schema in the Oracle DB is generated by a 3rd party CRM tool, and is hence not very easy to consume - there are weird field names, translation tables, etc. This data can be cleaned in one of (a) source system, (b) Kafka using stream processing, (c) each target system.
How to ensure in-order processing for parallel consumers?
Kafka allows each consumer to read a different partition, where each partition is guaranteed to be in order. Topics and partitions need to be picked in a way that guarantees that messages in each partition are completely independent. If we pick a topic per table, and hash record to partitions based on record_id, this should work most of the time. However what happens when a new child object is added? We need to make sure it gets processed before the parent uses it's foreign_id
One solution I have implemented is to publish only the record id into Kafka and in the Consumer, use a lookup to the origin DB to get the complete record. I would think that in a scenario like the one described in the question, you may want to use the CRM tool API to lookup that particular record and not reverse engineer the record lookup in your code.
How did you end up implementing the solution ?