Oracle change-data-capture with Kafka best practices - apache-kafka

I'm working on a project where we need to stream real-time updates from Oracle to a bunch of systems (Cassandra, Hadoop, real-time processing, etc). We are planing to use Golden Gate to capture the changes from Oracle, write them to Kafka, and then let different target systems read the event from Kafka.
There are quite a few design decisions that need to be made:
What data to write into Kafka on updates?
GoldenGate emits updates in a form of record ID, and updated field. These changes can be writing into Kafka in one of 3 ways:
Full rows: For every field change, emit the full row. This gives a full representation of the 'object', but probably requires making a query to get the full row.
Only updated fields: The easiest, but it's kind of a weird to work with as you never have a full representation of an object easily accessible. How would one write this to Hadoop?
Events: Probably the cleanest format ( and the best fit for Kafka), but it requires a lot of work to translate db field updates into events.
Where to perform data transformation and cleanup?
The schema in the Oracle DB is generated by a 3rd party CRM tool, and is hence not very easy to consume - there are weird field names, translation tables, etc. This data can be cleaned in one of (a) source system, (b) Kafka using stream processing, (c) each target system.
How to ensure in-order processing for parallel consumers?
Kafka allows each consumer to read a different partition, where each partition is guaranteed to be in order. Topics and partitions need to be picked in a way that guarantees that messages in each partition are completely independent. If we pick a topic per table, and hash record to partitions based on record_id, this should work most of the time. However what happens when a new child object is added? We need to make sure it gets processed before the parent uses it's foreign_id

One solution I have implemented is to publish only the record id into Kafka and in the Consumer, use a lookup to the origin DB to get the complete record. I would think that in a scenario like the one described in the question, you may want to use the CRM tool API to lookup that particular record and not reverse engineer the record lookup in your code.
How did you end up implementing the solution ?

Related

How do you get the latest offset from a remote query to a Table in ksqlDB?

I have an architecture where I would like to query a ksqlDB Table from a Kafka stream A (created by ksqlDB). On startup, Service A will load in all the data from this table into a hashmap, and then afterward it will start consuming from Kafka Stream A and act off any events to update this hashmap. I want to avoid any race condition in which I would miss any events that were propagated to Kafka Stream A in the time between I queried the table, and when I started consuming off Kafka Stream A. Is there a way that I can retrieve the latest offset that my query to the table is populated by so that I can use that offset to start consuming from Kafka Stream A?
Another thing to mention is that we have hundreds of instances of our app going up and down so reading directly off the Kafka stream is not an option. Reading an entire stream worth of data every time our apps come up is not a scalable solution. Reading in the event streams data into a hashmap on the service is a hard requirement. This is why the ksqlDB table seems like a good option since we can get the latest state of data in the format needed and then just update based off of events from the stream. Kafka Stream A is essentially a CDC stream off of a MySQL table that has been enriched with other data.
You used "materialized view" but I'm going to pretend I
heard "table". I have often used materialized views
in a historical reporting context, but not with live updates.
I assume that yours will behave similar to a "table".
I assume that all events, and DB rows, have timestamps.
Hopefully they are "mostly monotonic", so applying a
small safety window lets us efficiently process just
the relevant recent ones.
The crux of the matter is racing updates.
We need to prohibit races.
Each time an instance of a writer, such as your app,
comes up, assign it a new name.
Rolling a guid is often the most convenient way to do that,
or perhaps prepend it with a timestamp if sort order matters.
Ensure that each DB row mentions that "owning" name.
want to avoid any race condition in which I would miss any events that were propagated to Kafka Stream A in the time between I queried the materialized view, and when I started consuming off Kafka Stream A.
We will need a guaranteed monotonic column with an integer ID
or a timestamp. Let's call it ts.
Query m = max(ts).
Do a big query of records < m, slowly filling your hashmap.
Start consuming Stream A.
Do a small query of records >= m, updating the hashmap.
Continue to loop through subsequently arriving Stream A records.
Now you're caught up, and can maintain the hashmap in sync with DB.
Your business logic probably requires that you
treat DB rows mentioning the "self" guid
in a different way from rows that existed
prior to startup.
Think of it as de-dup, or ignoring replayed rows.
You may find offsetsForTimes() useful.
There's also listOffsets().

Category projections using kafka and cassandra for event-sourcing

I'm using Cassandra and Kafka for event-sourcing, and it works quite well. But I've just recently discovered a potentially major flaw in the design/set-up. A brief intro to how it is done:
The aggregate command handler is basically a kafka consumer, which consumes messages of interest on a topic:
1.1 When it receives a command, it loads all events for the aggregate, and replays the aggregate event handler for each event to get the aggregate up to current state.
1.2 Based on the command and businiss logic it then applies one or more events to the event store. This involves inserting the new event(s) to the event store table in cassandra. The events are stamped with a version number for the aggregate - starting at version 0 for a new aggregate, making projections possible. In addition it sends the event to another topic (for projection purposes).
1.3 A kafka consumer will listen on the topic upon these events are published. This consumer will act as a projector. When it receives an event of interest, it loads the current read model for the aggregate. It checks that the version of the event it has received is the expected version, and then updates the read model.
This seems to work very well. The problem is when I want to have what EventStore calls category projections. Let's take Order aggregate as an example. I can easily project one or more read models pr Order. But if I want to for example have a projection which contains a customers 30 last orders, then I would need a category projection.
I'm just scratching my head how to accomplish this. I'm curious to know if any other are using Cassandra and Kafka for event sourcing. I've read a couple of places that some people discourage it. Maybe this is the reason.
I know EventStore has support for this built in. Maybe using Kafka as event store would be a better solution.
With this kind of architecture, you have to choose between:
Global event stream per type - simple
Partitioned event stream per type - scalable
Unless your system is fairly high throughput (say at least 10s or 100s of events per second for sustained periods to the stream type in question), the global stream is the simpler approach. Some systems (such as Event Store) give you the best of both worlds, by having very fine-grained streams (such as per aggregate instance) but with the ability to combine them into larger streams (per stream type/category/partition, per multiple stream types, etc.) in a performant and predictable way out of the box, while still being simple by only requiring you to keep track of a single global event position.
If you go partitioned with Kafka:
Your projection code will need to handle concurrent consumer groups accessing the same read models when processing events for different partitions that need to go into the same models. Depending on your target store for the projection, there are lots of ways to handle this (transactions, optimistic concurrency, atomic operations, etc.) but it would be a problem for some target stores
Your projection code will need to keep track of the stream position of each partition, not just a single position. If your projection reads from multiple streams, it has to keep track of lots of positions.
Using a global stream removes both of those concerns - performance is usually likely to be good enough.
In either case, you'll likely also want to get the stream position into the long term event storage (i.e. Cassandra) - you could do this by having a dedicated process reading from the event stream (partitioned or global) and just updating the events in Cassandra with the global or partition position of each event. (I have a similar thing with MongoDB - I have a process reading the 'oplog' and copying oplog timestamps into events, since oplog timestamps are totally ordered).
Another option is to drop Cassandra from the initial command processing and use Kafka Streams instead:
Partitioned command stream is processed by joining with a partitioned KTable of aggregates
Command result and events are computed
Atomically, KTable is updated with changed aggregate, events are written to event stream and command response is written to command response stream.
You would then have a downstream event processor that copies the events into Cassandra for easier querying etc. (and which can add the Kafka stream position to each event as it does it to give the category ordering). This can help with catch up subscriptions, etc. if you don't want to use Kafka for long term event storage. (To catch up, you'd just read as far as you can from Cassandra and then switch to streaming from Kafka from the position of the last Cassandra event). On the other hand, Kafka itself can store events for ever, so this isn't always necessary.
I hope this helps a bit with understanding the tradeoffs and problems you might encounter.

Event sourcing - why a dedicated event store?

I am trying to implement event sourcing/CQRS/DDD for the first time, mostly for learning purposes, where there is the idea of an event store and a message queue such as Apache Kafka, and you have events flowing from event store => Kafka Connect JDBC/Debezium CDC => Kafka.
I am wondering why there needs to be a separate event store when it sounds like its purpose can be fulfilled by Kafka itself with its main features and log compaction or configuring log retention for permanent storage. Should I store my events in a dedicated store like RDBMS to feed into Kafka or should I feed them straight into Kafka?
Much of the literature on event-sourcing and cqrs comes from the [domain driven design] community; in its earliest form, CQRS was called DDDD... Distributed domain driven design.
One of the common patterns in domain driven design is to have a domain model ensuring the integrity of the data in your durable storage, which is to say, ensuring that there are no internal contradictions...
I am wondering why there needs to be a separate event store when it sounds like its purpose can be fulfilled by Kafka itself with its main features and log compaction or configuring log retention for permanent storage.
So if we want an event stream with no internal contradictions, how do we achieve that? One way is to ensure that only a single process has permission to modify the stream. Unfortunately, that leaves you with a single point of failure -- the process dies, and everything comes to an end.
On the other hand, if you have multiple processes updating the same stream, then you have risk of concurrent writes, and data races, and contradictions being introduced because one writer couldn't yet see what the other one did.
With an RDBMS or an Event Store, we can solve this problem by using transactions, or compare and swap semantics; and attempt to extend the stream with new events is rejected if there has been a concurrent modification.
Furthermore, because of its DDD heritage, it is common for the durable store to be divided into many very fine grained partitions (aka "aggregates"). One single shopping cart might reasonably have four streams dedicated to it.
If Kafka lacks those capabilities, then it is going to be a lousy replacement for an event store. KAFKA-2260 has been open for more than four years now, so we seem to be lacking the first. From what I've been able to discern from the Kakfa literature, it isn't happy about fine grained streams either (although its been a while since I checked, perhaps things have changed).
See also: Jesper Hammarbäck writing about this 18 months ago, and reaching similar conclusions to those expressed here.
Kafka can be used as a DDD event store, but there are some complications if you do so due to the features it is missing.
Two key features that people use with event sourcing of aggregates are:
Load an aggregate, by reading the events for just that aggregate
When concurrently writing new events for an aggregate, ensure only one writer succeeds, to avoid corrupting the aggregate and breaking its invariants.
Kafka can't do either of these currently, since 1 fails since you generally need to have one stream per aggregate type (it doesn't scale to one stream per aggregate, and this wouldn't necessarily be desirable anyway), so there's no way to load just the events for one aggregate, and 2 fails since https://issues.apache.org/jira/browse/KAFKA-2260 has not been implemented.
So you have to write the system in such as way that capabilities 1 and 2 aren't needed. This can be done as follows:
Rather than invoking command handlers directly, write them to
streams. Have a command stream per aggregate type, sharded by
aggregate id (these don't need permanent retention). This ensures that you only ever process a single
command for a particular aggregate at a time.
Write snapshotting code for all your aggregate types
When processing a command message, do the following:
Load the aggregate snapshot
Validate the command against it
Write the new events (or return failure)
Apply the events to the aggregate
Save a new aggregate snapshot, including the current stream offset for the event stream
Return success to the client (via a reply message perhaps)
The only other problem is handling failures (such as the snapshotting failing). This can be handled during startup of a particular command processing partition - it simply needs to replay any events since the last snapshot succeeded, and update the corresponding snapshots before resuming command processing.
Kafka Streams appears to have the features to make this very simple - you have a KStream of commands that you transform into a KTable (containing snapshots, keyed by aggregate id) and a KStream of events (and possibly another stream containing responses). Kafka allows all this to work transactionally, so there is no risk of failing to update the snapshot. It will also handle migrating partitions to new servers, etc. (automatically loading the snapshot KTable into a local RocksDB when this happens).
there is the idea of an event store and a message queue such as Apache Kafka, and you have events flowing from event store => Kafka Connect JDBC/Debezium CDC => Kafka
In the essence of DDD-flavoured event sourcing, there's no place for message queues as such. One of the DDD tactical patterns is the aggregate pattern, which serves as a transactional boundary. DDD doesn't care how the aggregate state is persisted, and usually, people use state-based persistence with relational or document databases. When applying events-based persistence, we need to store new events as one transaction to the event store in a way that we can retrieve those events later in order to reconstruct the aggregate state. Thus, to support DDD-style event sourcing, the store needs to be able to index events by the aggregate id and we usually refer to the concept of the event stream, where such a stream is uniquely identified by the aggregate identifier, and where all events are stored in order, so the stream represents a single aggregate.
Because we rarely can live with a database that only allows us to retrieve a single entity by its id, we need to have some place where we can project those events into, so we can have a queryable store. That is what your diagram shows on the right side, as materialised views. More often, it is called the read side and models there are called read-models. That kind of store doesn't have to keep snapshots of aggregates. Quite the opposite, read-models serve the purpose to represent the system state in a way that can be directly consumed by the UI/API and often it doesn't match with the domain model as such.
As mentioned in one of the answers here, the typical command handler flow is:
Load one aggregate state by id, by reading all events for that aggregate. It already requires for the event store to support that kind of load, which Kafka cannot do.
Call the domain model (aggregate root method) to perform some action.
Store new events to the aggregate stream, all or none.
If you now start to write events to the store and publish them somewhere else, you get a two-phase commit issue, which is hard to solve. So, we usually prefer using products like EventStore, which has the ability to create a catch-up subscription for all written events. Kafka supports that too. It is also beneficial to have the ability to create new event indexes in the store, linking to existing events, especially if you have several systems using one store. In EventStore it can be done using internal projections, you can also do it with Kafka streams.
I would argue that indeed you don't need any messaging system between write and read sides. The write side should allow you to subscribe to the event feed, starting from any position in the event log, so you can build your read-models.
However, Kafka only works in systems that don't use the aggregate pattern, because it is essential to be able to use events, not a snapshot, as the source of truth, although it is of course discussable. I would look at the possibility to change the way how events are changing the entity state (fixing a bug, for example) and when you use events to reconstruct the entity state, you will be just fine, snapshots will stay the same and you'll need to apply correction events to fix all the snapshots.
I personally also prefer not to be tightly coupled to any infrastructure in my domain model. In fact, my domain models have zero dependencies on the infrastructure. By bringing the snapshotting logic to Kafka streams builder, I would be immediately coupled and from my point of view it is not the best solution.
Theoretically you can use Kafka for Event Store but as many people mentioned above that you will have several restrictions, biggest of those, only able to read event with the offset in the Kafka but no other criteria.
For this reason they are Frameworks there dealing with the Event Sourcing and CQRS part of the problem.
Kafka is only part of the toolchain which provides you the capability of replaying events and back pressure mechanism that are protecting you from overload.
If you want to see how all fits together, I have a blog about it

How do I implement Event Sourcing using Kafka?

I would like to implement the event-sourcing pattern using kafka as an event store.
I want to keep it as simple as possible.
The idea:
My app contains a list of customers. Customers an be created and deleted. Very simple.
When a request to create a customer comes in, I am creating the event CUSTOMER_CREATED including the customer data and storing this in a kafka topic using a KafkaProducer. The same when a customer is deleted with the event CUSTOMER_DELETED.
Now when i want to list all customers, i have to replay all events that happened so far and then get the current state meaning a list of all customers.
I would create a temporary customer list, and then processing all the events one by one (create customer, create customer, delete customer, create customer etc). (Consuming these events with a KafkaConsumer). In the end I return the temporary list.
I want to keep it as simple as possible and it's just about giving me an understanding on how event-sourcing works in practice. Is this event-sourcing? And also: how do I create snapshots when implementing it this way?
when i want to list all customers, i have to replay all events that happened so far
You actually don't, or at least not after your app starts fresh and is actively collecting / tombstoning the data. I encourage you to lookup the "Stream Table Duality", which basically states that your table is the current state of the world in your system, and a snapshot in time of all the streamed events thus far, which would be ((customers added + customers modified) - customers deleted).
The way you implement this in Kafka would be to use a compacted Kafka topic for your customers, which can be read into a Kafka Streams KTable, and persisted in memory or spill to disk (backed by RocksDB). The message key would be some UUID for the customer, or some other identifiable record that cannot change (e.g. not name, email, phone, etc. as all this can change)
With that, you can implement Interactive Queries on it to scan or lookup a certain customer's details.
Theoretically you can do Event Sourcing with Kafka as you mentioned, replaying all Events in the application start but as you mentioned, if you have 100 000 Events to reach a State it is not practical.
As it is mentioned in the previous answers, you can use Kafka Streaming KTable for sense of Event Sourcing but while KTable is hosted in Key/Value database RockDB, querying the data will be quite limited (You can ask what is the State of the Customer Id: 123456789 but you can't ask give me all Customers with State CUSTOMER_DELETED).
To achieve that flexibility, we need help from another pattern Command Query Responsibility Segregation (CQRS), personally I advice you to use Kafka reliable, extremely performant Broker and give the responsibility for Event Sourcing dedicated framework like Akka (which Kafka synergies naturally) with Apache Cassandra persistence and Akka Finite State Machine for the Command part and Akka Projection for the Query part.
If you want to see a sample how all these technology stacks plays together, I have a blog for it. I hope it can help you.

How do I keep the RDMS and Kafka in sync?

We want to introduce a Kafka Event Bus which will contain some events like EntityCreated or EntityModified into our application so other parts of our system can consume from it. The main application uses an RDMS (i.e. postgres) under the hood to store the entities and their relationship.
Now the issue is how you make sure that you only send out EntityCreated events on Kafka if you successfully saved to the RDMS. If you don't make sure that this is the case, you end up with inconsistencies on the consumers.
I saw three solutions, of which none is convincing:
Don't care: Very dangerous, there can be something going wrong when inserting into an RDMS.
When saving the entity, also save the message which should be sent into a own table. Then have a separate process which consumes from this table and publishes to Kafka and after a success deleted from this table. This is quiet complex to implement and also looks like an anti-pattern.
Insert into the RDMS, keep the (SQL-) Transaction open until you wrote successfully to Kafka and only then commit. The problem is that you potentially keep the RDMS transaction open for some time. Don't know how big the problem is.
Do real CQRS which means that you don't save at all to the RDMS but construct the RDMS out of the Kafka queue. That seems like the ideal way but is difficult to retrofit to a service. Also there are problems with inconsistencies due to latencies.
I had difficulties finding good solutions on the internet.
Maybe this question is to broad, feel free to point me somewhere it fits better.
When saving the entity, also save the message which should be sent into a own table. Then have a separate process which consumes from this table and publishes to Kafka and after a success deleted from this table. This is quiet complex to implement and also looks like an anti-pattern.
This is, in fact, the solution described by Udi Dahan in his talk: Reliable Messaging without Distributed Transactions. It's actually pretty close to a "best practice"; so it may be worth exploring why you think it is an anti-pattern.
Do real CQRS which means that you don't save at all to the RDMS but construct the RDMS out of the Kafka queue.
Noooo! That's where the monster is hiding! (see below).
If you were doing "real CQRS", your primary use case would be that your writers make events durable in your book of record, and the consumers would periodically poll for updates. Think "Atom Feed", with the additional constraint that the entries, and the order of entries, is immutable; you can share events, and pages of events; cache invalidation isn't a concern because, since the state doesn't change, the event representations are valid "forever".
This also has the benefit that your consumers don't need to worry about message ordering; the consumers are reading documents of well ordered events with pointers to the prior and subsequent documents.
Furthermore, you've additionally gotten a solution to a versioning story: rather than broadcasting N different representations of the same event, you send out one representation, and then negotiate the content when the consumer polls you.
Now, polling does have latency issues; you can reduce the latency by broadcasting an announcement of the update, and notifying the consumers that new events are available.
If you want to reduce the rate of false polling (waking up a consumer for an event that they don't care about), then you can start adding more information into the notification, so that the consumer can judge whether to pull an update.
Notice that "wake up and maybe poll" is a process that is triggered by a single event in isolation. "Wake up and poll just this message" is another variation on the same idea. We broadcast a thin version of EmailDeliveryScheduled; and the service responsible for that calls back to ask for the email/an enhanced version of the event with the details needed to construct the email.
These are specializations of "wake up and consume the notification". If you have a use case where you can't afford the additional latency required to poll, you can use the state in the representation of the isolated event.
But trying to reproduce an ordered sequence of events when that information is already exposed as a sharable, cacheable document... That's a pretty unusual use case right there. I wouldn't worry about it as a general problem to solve -- my guess is that these cases are rare, and not easily generalized.
Note that all of the above is about messaging, not about Kafka. Notice that messaging and event sourcing are documented as different use cases. Jay Kreps wrote (2013)
I use the term "log" here instead of "messaging system" or "pub sub" because it is a lot more specific about semantics and a much closer description of what you need in a practical implementation to support data replication.
You can think of the log as acting as a kind of messaging system with durability guarantees and strong ordering semantics
The book of record should be the sole authority for the order of event messages. Any consumer that cares about order should be reading ordered documents from the book of record, rather than reading unordered documents and reconstructing the order.
In your current design....
Now the issue is how you make sure that you only send out EntityCreated events on Kafka if you successfully saved to the RDMS.
If the RDBMS is the book of record (the source of "truth"), then the Kafka log isn't (yet).
You can get there from here, over a number of gentle steps; roughly, you add events into the existing database, you read from the existing database to write into kafka's log; you use kafka's log as a (time delayed) source of truth to build a replica of the existing RDBMS, you migrate your read use cases to the replica, you migrate your write use cases to kafka, and you decommission the legacy database.
Kafka's log may or may not be the book of record you want. Greg Young has been developing Get Event Store for quite some time, and has enumerated some of the tradeoffs (2016). Horses for courses - I wouldn't expect it to be too difficult to switch the log from one of these to the other with a well written code base, but I can't speak at all to the additional coupling that might occur.
There is no perfect way to do this if your requirement is look SQL & kafka as a single node. So the question should be: "What bad things(power failure, hardware failure) I can afford if it happen? What the changes(programming, architecture) I can take if it must apply to my applications?"
For those points you mentioned:
What if the node fail after insert to kafka before delete from sql?
What if the node fail after insert to kafka before commit the sql transaction?
What if the node fail after insert to sql before commit the kafka offset?
All of them will facing the risk of data inconsistency(4 is slightly better if the data insert to sql can not success more than once such as they has a non database generated pk).
From the viewpoint of changes, 3 is smallest, however, it will decrease sql throughput. 4 is biggest due to your business logic model will facing two kinds of database when you coding(write to kafka by a data encoder, read from sql by sql sentence), it has more coupling than others.
So the choice is depend on what your business is. There is no generic way.