Avoid Data Loss While Processing Messages from Kafka - apache-kafka

Looking out for best approach for designing my Kafka Consumer. Basically I would like to see what is the best way to avoid data loss in case there are any
exception/errors during processing the messages.
My use case is as below.
a) The reason why I am using a SERVICE to process the message is - in future I am planning to write an ERROR PROCESSOR application which would run at the end of the day, which will try to process the failed messages (not all messages, but messages which fails because of any dependencies like parent missing) again.
b) I want to make sure there is zero message loss and so I will save the message to a file in case there are any issues while saving the message to DB.
c) In production environment there can be multiple instances of consumer and services running and so there is high chance that multiple applications try to write to the
same file.
Q-1) Is writing to file the only option to avoid data loss ?
Q-2) If it is the only option, how to make sure multiple applications write to the same file and read at the same time ? Please consider in future once the error processor
is build, it might be reading the messages from the same file while another application is trying to write to the file.
ERROR PROCESSOR - Our source is following a event driven mechanics and there is high chance that some times the dependent event (for example, the parent entity for something) might get delayed by a couple of days. So in that case, I want my ERROR PROCESSOR to process the same messages multiple times.

I've run into something similar before. So, diving straight into your questions:
Not necessarily, you could perhaps send those messages back to Kafka in a new topic (let's say - error-topic). So, when your error processor is ready, it could just listen in to the this error-topic and consume those messages as they come in.
I think this question has been addressed in response to the first one. So, instead of using a file to write to and read from and open multiple file handles to do this concurrently, Kafka might be a better choice as it is designed for such problems.
Note: The following point is just some food for thought based on my limited understanding of your problem domain. So, you may just choose to ignore this safely.
One more point worth considering on your design for the service component - You might as well consider merging points 4 and 5 by sending all the error messages back to Kafka. That will enable you to process all error messages in a consistent way as opposed to putting some messages in the error DB and some in Kafka.
EDIT: Based on the additional information on the ERROR PROCESSOR requirement, here's a diagrammatic representation of the solution design.
I've deliberately kept the output of the ERROR PROCESSOR abstract for now just to keep it generic.
I hope this helps!

If you don't commit the consumed message before writing to the database, then nothing would be lost while Kafka retains the message. The tradeoff of that would be that if the consumer did commit to the database, but a Kafka offset commit fails or times out, you'd end up consuming records again and potentially have duplicates being processed in your service.
Even if you did write to a file, you wouldn't be guaranteed ordering unless you opened a file per partition, and ensured all consumers only ran on a single machine (because you're preserving state there, which isn't fault-tolerant). Deduplication would still need handled as well.
Also, rather than write your own consumer to a database, you could look into Kafka Connect framework. For validating a message, you can similarly deploy a Kafka Streams application to filter out bad messages from an input topic out into a topic to send to the DB

Related

Minimizing failure without impacting recovery when building processes on top of Kafka

I am working with a microservice that consumes messages from Kafka. It does some processing on the message and then inserts the result in a database. Only then am I acknowledging the message with Kafka.
It is required that I keep data loss to an absolute minimum but recovery rate is quick (avoid reprocessing message because it is expensive).
I realized that if there was to be some kind of failure, like my microservice would crash, my messages would be reprocessed. So I thought to add some kind of 'checkpoint' to my process by writing the state of the transformed message to the file and reading from it after a failure. I thought this would mean that I could move my Kafka commit to an earlier stage, only after writing to the file is successful.
But then, upon further thinking, I realized that if there was to be a failure on the file system, I might not find my files e.g. using a cloud file service might still have a chance of failure even if the marketed rate is that of >99% availability. I might end up in an inconsistent state where I have data in my Kafka topic (which is unaccessible because the Kafka offset has been committed) but I have lost my file on the file system. This made me realize that I should send the Kafka commit at a later stage.
So now, considering the above two design decisions, it feels like there is a tradeoff between not missing data and minimizing time to recover from failure. Am I being unrealistic in my concerns? Is there some design pattern that I can follow to minimize the tradeoffs? How do I reason about this situation? Here I thought that maybe the Saga pattern is appropriate, but am I overcomplicating things?
If you are that concerned of data reprocess, you could always follow the paradigm of sending the offsets out of kafka.
For example, in your consumer-worker reading loop:
(pseudocode)
while(...)
{
MessageAndOffset = getMsg();
//do your things
saveOffsetInQueueToDB(offset);
}
saveOffsetInQueueToDB is responsible of adding the offset to a Queue/List, or whatever. This operation is only done one the message has been correctly processed.
Periodically, when a certain number of offsets are stored, or when shutdown is captured, you could implement another function that stores the offsets for each topic/partition in:
An external database.
An external SLA backed storing system, such as S3 or Azure Blobs.
Internal (disk) and remote loggers.
If you are concerned about failures, you could use a combination of two of those three options (or even use all three).
Storing these in a "memory buffer" allows the operation to be async, so there's no need for a new transfer/connection to the database/datalake/log for each processed message.
If there's a crash, you could read all messages from the beginning (easiest way is just changing the group.id and setting from beginning) but discarding those whose offset is included in the database, avoiding the reprocess. For example by adding a condition in your loop (yep pseudocode again):
while(...)
{
MessageAndOffset = getMsg();
if (offset.notIncluded(offsetListFromDB))
{
//do your things
saveOffsetInQueueToDB(offset);
}
}
You could implement better performant algorithms instead a "non-included" type one, just storing the last read offsets for each partition in a HashMap and then just checking if the partition that belongs to each consumer is bigger or not than the stored one. For example, partition 0's last offset was 558 and partitions 1's 600:
//offsetMap = {[0,558],[1,600]}
while(...)
{
MessageAndOffset = getMsg();
//get partition => 0
if (offset > offsetMap.get(partition))
{
//do your things
saveOffsetInQueueToDB(offset);
}
}
This way, you guarantee that only the non-processed messages from each partition will be processed.
Regarding file system failures, that's why Kafka comes as a cluster: Fault tolerance in Kafka is done by copying the partition data to other brokers which are known as replicas.
So if you have 5 brokers, for example, you must experience a total of 5 different system failures at the same time (I guess brokers are in separate hosts) in order to lose any data. Even 4 different brokers could fail at the same time without losing any data.
All brokers save the same amount of data, same partitions. If a filesystem error occurs in one of the brokers, the others will still hold all the information:

How to boot up a Microservice from events

Say I have a shop application and I want to make some complicated validations for that operation.
Events are the single source of truth in my system.
Adding a product is represented by a ProductAdded message.
The microservice responsible for validating the product reads a message, validates it, and produces a ProductValidated message.
But what happens if I want to microservice to boot up from zero?
On bootup, each and every message is reprocessed, resulting in a redundant and duplication of validation for each consumed message.
This could be solved by first reading all messages from the messaging queue and when all messages are loaded, start an asynchronous process of validation.
But how can it ensure that all messages are loaded? maybe messages are produced quicker than the process of building the state from events. A solution could be querying the messaging queue for the total number of messages at a given moment. Then, reading all of them and process them. Then, query and process again.
The problem with this one is that it doesn't seem to me like a typical solution for this challenge. I want to find out what is a popular practice to do in this situation.
You have few options:
A KTable, which you aggregate by shopping cart (each shopping cart cannot have the same product twice). To prevent this from growing too big, records need to be 'tombstoned', so another thing needs to tell the app that a shopping cart is no more.
Remember that to do any kind of aggregation in Kafka, you need local storage. If you don't want or cannot have local storage, Kafka is the wrong tool.
I don't fully understand your points under But there is a problem with the microservice validation process. First it says no caching or local storage, and the second point says load everything (which implies caching in local storage).
--- Edit
You can check is this example from Confluent that does a validation on orders: https://github.com/confluentinc/kafka-streams-examples/tree/5.4.1-post/src/main/java/io/confluent/examples/streams/microservices .
If I understand you correctly, you can have a local storage that doesn't have a changelog, so you can re-populate it on restart.
Check the class InventoryService.java, there you can see how to create a separe store. The line you want to omit is .withLoggingEnabled(), as that creates a changelog topic.
final StoreBuilder reservedStock = Stores
.keyValueStoreBuilder(Stores.persistentKeyValueStore(RESERVED_STOCK_STORE_NAME),
Topics.WAREHOUSE_INVENTORY.keySerde(), Serdes.Long())
builder.addStateStore(reservedStock);
The 2 other things you'll need to do are:
Configure the stream to go back to the ealiest record config.put(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, "earliest");
Have a bit of code that finds the store and wipes it before you build the stream. Check this blog post by Confluent, the section Local State Stores, which explains part of how to find the directory where the local files are stored, so you can wipe the directory.

Kafka - different configuration settings

I am going through the documentation, and there seems to be there are lot of moving with respect to message processing like exactly once processing , at least once processing . And, the settings scattered here and there. There doesnt seem a single place that documents the properties need to be configured rougly for exactly once processing and atleast once processing.
I know there are many moving parts involved and it always depends . However, like i was mentioning before , what are the settings to be configured atleast to provide exactly once processing and at most once and atleast once ...
You might be interested in the first part of Kafka FAQ that describes some approaches on how to avoid duplication on data production (i.e. on producer side):
Exactly once semantics has two parts: avoiding duplication during data
production and avoiding duplicates during data consumption.
There are two approaches to getting exactly once semantics during data
production:
Use a single-writer per partition and every time you get a network
error check the last message in that partition to see if your last
write succeeded
Include a primary key (UUID or something) in the
message and deduplicate on the consumer.
If you do one of these things, the log that Kafka hosts will be
duplicate-free. However, reading without duplicates depends on some
co-operation from the consumer too. If the consumer is periodically
checkpointing its position then if it fails and restarts it will
restart from the checkpointed position. Thus if the data output and
the checkpoint are not written atomically it will be possible to get
duplicates here as well. This problem is particular to your storage
system. For example, if you are using a database you could commit
these together in a transaction. The HDFS loader Camus that LinkedIn
wrote does something like this for Hadoop loads. The other alternative
that doesn't require a transaction is to store the offset with the
data loaded and deduplicate using the topic/partition/offset
combination.

Synchronising transactions between database and Kafka producer

We have a micro-services architecture, with Kafka used as the communication mechanism between the services. Some of the services have their own databases. Say the user makes a call to Service A, which should result in a record (or set of records) being created in that service’s database. Additionally, this event should be reported to other services, as an item on a Kafka topic. What is the best way of ensuring that the database record(s) are only written if the Kafka topic is successfully updated (essentially creating a distributed transaction around the database update and the Kafka update)?
We are thinking of using spring-kafka (in a Spring Boot WebFlux service), and I can see that it has a KafkaTransactionManager, but from what I understand this is more about Kafka transactions themselves (ensuring consistency across the Kafka producers and consumers), rather than synchronising transactions across two systems (see here: “Kafka doesn't support XA and you have to deal with the possibility that the DB tx might commit while the Kafka tx rolls back.”). Additionally, I think this class relies on Spring’s transaction framework which, at least as far as I currently understand, is thread-bound, and won’t work if using a reactive approach (e.g. WebFlux) where different parts of an operation may execute on different threads. (We are using reactive-pg-client, so are manually handling transactions, rather than using Spring’s framework.)
Some options I can think of:
Don’t write the data to the database: only write it to Kafka. Then use a consumer (in Service A) to update the database. This seems like it might not be the most efficient, and will have problems in that the service which the user called cannot immediately see the database changes it should have just created.
Don’t write directly to Kafka: write to the database only, and use something like Debezium to report the change to Kafka. The problem here is that the changes are based on individual database records, whereas the business significant event to store in Kafka might involve a combination of data from multiple tables.
Write to the database first (if that fails, do nothing and just throw the exception). Then, when writing to Kafka, assume that the write might fail. Use the built-in auto-retry functionality to get it to keep trying for a while. If that eventually completely fails, try to write to a dead letter queue and create some sort of manual mechanism for admins to sort it out. And if writing to the DLQ fails (i.e. Kafka is completely down), just log it some other way (e.g. to the database), and again create some sort of manual mechanism for admins to sort it out.
Anyone got any thoughts or advice on the above, or able to correct any mistakes in my assumptions above?
Thanks in advance!
I'd suggest to use a slightly altered variant of approach 2.
Write into your database only, but in addition to the actual table writes, also write "events" into a special table within that same database; these event records would contain the aggregations you need. In the easiest way, you'd simply insert another entity e.g. mapped by JPA, which contains a JSON property with the aggregate payload. Of course this could be automated by some means of transaction listener / framework component.
Then use Debezium to capture the changes just from that table and stream them into Kafka. That way you have both: eventually consistent state in Kafka (the events in Kafka may trail behind or you might see a few events a second time after a restart, but eventually they'll reflect the database state) without the need for distributed transactions, and the business level event semantics you're after.
(Disclaimer: I'm the lead of Debezium; funnily enough I'm just in the process of writing a blog post discussing this approach in more detail)
Here are the posts
https://debezium.io/blog/2018/09/20/materializing-aggregate-views-with-hibernate-and-debezium/
https://debezium.io/blog/2019/02/19/reliable-microservices-data-exchange-with-the-outbox-pattern/
first of all, I have to say that I’m no Kafka, nor a Spring expert but I think that it’s more a conceptual challenge when writing to independent resources and the solution should be adaptable to your technology stack. Furthermore, I should say that this solution tries to solve the problem without an external component like Debezium, because in my opinion each additional component brings challenges in testing, maintaining and running an application which is often underestimated when choosing such an option. Also not every database can be used as a Debezium-source.
To make sure that we are talking about the same goals, let’s clarify the situation in an simplified airline example, where customers can buy tickets. After a successful order the customer will receive a message (mail, push-notification, …) that is sent by an external messaging system (the system we have to talk with).
In a traditional JMS world with an XA transaction between our database (where we store orders) and the JMS provider it would look like the following: The client sets the order to our app where we start a transaction. The app stores the order in its database. Then the message is sent to JMS and you can commit the transaction. Both operations participate at the transaction even when they’re talking to their own resources. As the XA transaction guarantees ACID we’re fine.
Let’s bring Kafka (or any other resource that is not able to participate at the XA transaction) in the game. As there is no coordinator that syncs both transactions anymore the main idea of the following is to split processing in two parts with a persistent state.
When you store the order in your database you can also store the message (with aggregated data) in the same database (e.g. as JSON in a CLOB-column) that you want to send to Kafka afterwards. Same resource – ACID guaranteed, everything fine so far. Now you need a mechanism that polls your “KafkaTasks”-Table for new tasks that should be send to a Kafka-Topic (e.g. with a timer service, maybe #Scheduled annotation can be used in Spring). After the message has been successfully sent to Kafka you can delete the task entry. This ensures that the message to Kafka is only sent when the order is also successfully stored in application database. Did we achieve the same guarantees as we have when using a XA transaction? Unfortunately, no, as there is still the chance that writing to Kafka works but the deletion of the task fails. In this case the retry-mechanism (you would need one as mentioned in your question) would reprocess the task an sends the message twice. If your business case is happy with this “at-least-once”-guarantee you’re done here with a imho semi-complex solution that could be easily implemented as framework functionality so not everyone has to bother with the details.
If you need “exactly-once” then you cannot store your state in the application database (in this case “deletion of a task” is the “state”) but instead you must store it in Kafka (assuming that you have ACID guarantees between two Kafka topics). An example: Let’s say you have 100 tasks in the table (IDs 1 to 100) and the task job processes the first 10. You write your Kafka messages to their topic and another message with the ID 10 to “your topic”. All in the same Kafka-transaction. In the next cycle you consume your topic (value is 10) and take this value to get the next 10 tasks (and delete the already processed tasks).
If there are easier (in-application) solutions with the same guarantees I’m looking forward to hear from you!
Sorry for the long answer but I hope it helps.
All the approach described above are the best way to approach the problem and are well defined pattern. You can explore these in the links provided below.
Pattern: Transactional outbox
Publish an event or message as part of a database transaction by saving it in an OUTBOX in the database.
http://microservices.io/patterns/data/transactional-outbox.html
Pattern: Polling publisher
Publish messages by polling the outbox in the database.
http://microservices.io/patterns/data/polling-publisher.html
Pattern: Transaction log tailing
Publish changes made to the database by tailing the transaction log.
http://microservices.io/patterns/data/transaction-log-tailing.html
Debezium is a valid answer but (as I've experienced) it can require some extra overhead of running an extra pod and making sure that pod doesn't fall over. This could just be me griping about a few back to back instances where pods OOM errored and didn't come back up, networking rule rollouts dropped some messages, WAL access to an aws aurora db started behaving oddly... It seems that everything that could have gone wrong, did. Not saying Debezium is bad, it's fantastically stable, but often for devs running it becomes a networking skill rather than a coding skill.
As a KISS solution using normal coding solutions that will work 99.99% of the time (and inform you of the .01%) would be:
Start Transaction
Sync save to DB
-> If fail, then bail out.
Async send message to kafka.
Block until the topic reports that it has received the
message.
-> if it times out or fails Abort Transaction.
-> if it succeeds Commit Transaction.
I'd suggest to use a new approach 2-phase message. In this new approach, much less codes are needed, and you don't need Debeziums any more.
https://betterprogramming.pub/an-alternative-to-outbox-pattern-7564562843ae
For this new approach, what you need to do is:
When writing your database, write an event record to an auxiliary table.
Submit a 2-phase message to DTM
Write a service to query whether an event is saved in the auxiliary table.
With the help of DTM SDK, you can accomplish the above 3 steps with 8 lines in Go, much less codes than other solutions.
msg := dtmcli.NewMsg(DtmServer, gid).
Add(busi.Busi+"/TransIn", &TransReq{Amount: 30})
err := msg.DoAndSubmitDB(busi.Busi+"/QueryPrepared", db, func(tx *sql.Tx) error {
return AdjustBalance(tx, busi.TransOutUID, -req.Amount)
})
app.GET(BusiAPI+"/QueryPrepared", dtmutil.WrapHandler2(func(c *gin.Context) interface{} {
return MustBarrierFromGin(c).QueryPrepared(db)
}))
Each of your origin options has its disadvantage:
The user cannot immediately see the database changes it have just created.
Debezium will capture the log of the database, which may be much larger than the events you wanted. Also deployment and maintenance of Debezium is not an easy job.
"built-in auto-retry functionality" is not cheap, it may require much codes or maintenance efforts.

How often put() is triggered in Kafka Connect sink tasks?

Can I control the intervals at which the put() method of my Kafka Connect Sink tasks is triggered? What is the expected behavior of the Kafka Connect framework in this respect? Ideally, I would like to specify, for example, "don't call me unless you have X new records/Y new bytes, or Z milliseconds passed since the last invocation". This could potentially make the batching logic within the sink task simpler (quoting the documentation, "in many cases internal buffering will be useful so an entire batch of records can be sent at once, reducing the overhead of inserting events into the downstream data store).
Today, put from a SinkTask is only called when deliverMessages is invoked in a WorkerSinkTask. The good news is that the only time deliverMessages happens is within poll so you should have some control over how often you poll for new records by overriding consumer properties.
If you want to do internal buffering, you could have a look at how the HDFSConnector is handling this in its implementation of SinkTask. However, right now, Connect will immediately put any records that get returned by the poll.
All of that said, if you are really looking to batch messages before they hit the downstream system, you might consider looking into offset.flush.interval.ms and offset.flush.timeout.ms which control how often flush() is invoked.