Coq: Induction on associated variable - coq

I can figure out how to prove my "degree_descent" Theorem below if I really need to:
Variable X : Type.
Variable degree : X -> nat.
Variable P : X -> Prop.
Axiom inductive_by_degree : forall n, (forall x, S (degree x) = n -> P x) -> (forall x, degree x = n -> P x).
Lemma hacky_rephrasing : forall n, forall x, degree x = n -> P x.
Proof. induction n; intros.
- apply (inductive_by_degree 0). discriminate. exact H.
- apply (inductive_by_degree (S n)); try exact H. intros y K. apply IHn. injection K; auto.
Qed.
Theorem degree_descent : forall x, P x.
Proof. intro. apply (hacky_rephrasing (degree x)); reflexivity.
Qed.
but this "hacky_rephrasing" Lemma is an ugly and unintuitive pattern to me. Is there a better way to prove degree_descent all by itself? For example, using set or pose to introduce n := degree x and then invoking induction n isn't working because it annihilates the hypothesis from the subsequent contexts (if someone could explain why this occurs, too, that would be helpful!). I can't figure out how to get generalize to work with me here, either.
PS: This is just weak induction for simplicity, but ideally I would like the solution to work with custom induction schemes via induction ... using ....

It looks like you would like to use the remember tactic:
Variable X : Type.
Variable degree : X -> nat.
Variable P : X -> Prop.
Axiom inductive_by_degree : forall n, (forall x, S (degree x) = n -> P x) -> (forall x, degree x = n -> P x).
Theorem degree_descent : forall x, P x.
Proof.
intro x. remember (degree x) as n eqn:E.
symmetry in E. revert x E.
(* Goal: forall x : X, degree x = n -> P x *)
Restart. From Coq Require Import ssreflect.
(* Or ssreflect style *)
move=> x; move: {2}(degree x) (eq_refl : degree x = _)=> n.
(* ... *)

Related

How to improve this proof?

I work on mereology and I wanted to prove that a given theorem (Extensionality) follows from the four axioms I had.
This is my code:
Require Import Classical.
Parameter Entity: Set.
Parameter P : Entity -> Entity -> Prop.
Axiom P_refl : forall x, P x x.
Axiom P_trans : forall x y z,
P x y -> P y z -> P x z.
Axiom P_antisym : forall x y,
P x y -> P y x -> x = y.
Definition PP x y := P x y /\ x <> y.
Definition O x y := exists z, P z x /\ P z y.
Axiom strong_supp : forall x y,
~ P y x -> exists z, P z y /\ ~ O z x.
And this is my proof:
Theorem extension : forall x y,
(exists z, PP z x) -> (forall z, PP z x <-> PP z y) -> x = y.
Proof.
intros x y [w PPwx] H.
apply Peirce.
intros Hcontra.
destruct (classic (P y x)) as [yesP|notP].
- pose proof (H y) as [].
destruct H0.
split; auto.
contradiction.
- pose proof (strong_supp x y notP) as [z []].
assert (y = z).
apply Peirce.
intros Hcontra'.
pose proof (H z) as [].
destruct H3.
split; auto.
destruct H1.
exists z.
split.
apply P_refl.
assumption.
rewrite <- H2 in H1.
pose proof (H w) as [].
pose proof (H3 PPwx).
destruct PPwx.
destruct H5.
destruct H1.
exists w.
split; assumption.
Qed.
I’m happy with the fact that I completed this proof. However, I find it quite messy. And I don’t know how to improve it. (The only thing I think of is to use patterns instead of destruct.) It is possible to improve this proof? If so, please do not use super complex tactics: I would like to understand the upgrades you will propose.
Here is a refactoring of your proof:
Require Import Classical.
Parameter Entity: Set.
Parameter P : Entity -> Entity -> Prop.
Axiom P_refl : forall x, P x x.
Axiom P_trans : forall x y z,
P x y -> P y z -> P x z.
Axiom P_antisym : forall x y,
P x y -> P y x -> x = y.
Definition PP x y := P x y /\ x <> y.
Definition O x y := exists z, P z x /\ P z y.
Axiom strong_supp : forall x y,
~ P y x -> exists z, P z y /\ ~ O z x.
Theorem extension : forall x y,
(exists z, PP z x) -> (forall z, PP z x <-> PP z y) -> x = y.
Proof.
intros x y [w PPwx] x_equiv_y.
apply NNPP. intros x_ne_y.
assert (~ P y x) as NPyx.
{ intros Pxy.
enough (PP y y) as [_ y_ne_y] by congruence.
rewrite <- x_equiv_y. split; congruence. }
destruct (strong_supp x y NPyx) as (z & Pzy & NOzx).
assert (y <> z) as y_ne_z.
{ intros <-. (* Substitute z right away. *)
assert (PP w y) as [Pwy NEwy] by (rewrite <- x_equiv_y; trivial).
destruct PPwx as [Pwx NEwx].
apply NOzx.
now exists w. }
assert (PP z x) as [Pzx _].
{ rewrite x_equiv_y. split; congruence. }
apply NOzx. exists z. split; trivial.
apply P_refl.
Qed.
The main changes are:
Give explicit and informative names to all the intermediate hypotheses (i.e., avoid doing destruct foo as [x []])
Use curly braces to separate the proofs of the intermediate assertions from the main proof.
Use the congruence tactic to automate some of the low-level equality reasoning. Roughly speaking, this tactic solves goals that can be established just by rewriting with equalities and pruning subgoals with contradictory statements like x <> x.
Condense trivial proof steps using the assert ... by tactic, which does not generate new subgoals.
Use the (a & b & c) destruct patterns rather than [a [b c]], which are harder to read.
Rewrite with x_equiv_y to avoid doing sequences such as specialize... destruct... apply H0 in H1
Avoid some unnecessary uses of classical reasoning.

How to destruct a function (like H : ~ (forall x : X, p x)) in Coq?

I've been trying to prove a Lemma in Coq that like this,
Goal forall (X : Type) (p : X -> Prop),
(exists x, ~ p x) <-> ~ (forall x, p x).
This is my attempt at it,
Proof.
intros X p. split.
- intros [x B] C. apply B. apply C.
- simpl. intros H.
I got stuck, with this.
1 subgoal
X : Type
p : X -> Prop
H : ~ (forall x : X, p x)
______________________________________(1/1)
exists x : X, ~ p x
And now, my thinking is that maybe i could destruct H in a certain way to progress. Or maybe there's a better way of finishing this? Please help, thanks in advance!
yep, you need an extra axiom
If you do :
Require Import Classical.
Check classic.
now using classic, you can do the proof.

Are there any tactics to work with preconditions with "and"?

My goal is like below. Are there any tactics to solve these trivial goals?
Goal forall A (x : A) P Q,
(forall y, P y /\ Q y) ->
Q x.
Proof.
intros. intuition. auto.
Abort.
(* a more complex version *)
Goal forall A (x : A) P Q R,
(forall y, R -> P y /\ Q y) ->
R ->
Q x.
Proof.
intros. intuition. auto.
Abort.
The tactic intuition does not work because that tactic is designed for propositional logic (i.e. it dos not the quantifier in forall y, R -> ... There is another tactic for this, it is called firstorder. Try it!

Inductive Predicate for Addition in Coq

I'm new to inductive predicates in Coq. I have learned how to define simple inductive predicates such as "even" (as in adam.chlipala.net/cpdt/html/Predicates.html) or "last" (as in http://www.cse.chalmers.se/research/group/logic/TypesSS05/resources/coq/CoqArt/inductive-prop-chap/SRC/last.v).
Now I wanted to try something slightly more complicated: to define addition as an inductive predicate, but I got stuck. I did the following:
Inductive N : Type :=
| z : N (* zero *)
| s : N -> N. (* successor *)
Inductive Add: N -> N -> N -> Prop :=
| add_z: forall n, (Add n z n)
| add_s: forall m n r, (Add m n r) -> (Add m (s n) (s r)).
Fixpoint plus (x y : N) :=
match y with
| z => x
| (s n) => (s (plus x n))
end.
And I would like to prove a simple theorem (analogously to what has been done for last and last_fun in www.cse.chalmers.se/research/group/logic/TypesSS05/resources/coq/CoqArt/inductive-prop-chap/SRC/last.v):
Theorem T1: forall x y r, (plus x y) = r -> (Add x y r).
Proof.
intros x y r. induction y.
simpl. intro H. rewrite H. apply add_z.
case r.
simpl. intro H. discriminate H.
???
But then I get stuck. The induction hypothesis seems strange. I don't know if I defined Add wrongly, or if I am just using wrong tactics. Could you please help me, by either correcting my inductive Add or telling me how to complete this proof?
You introduced r before using induction on y. In general you'll want to use induction before introducing anything so the induction hypothesis is as general as possible.
Conjecture injectivity : forall n m, s n = s m -> n = m.
Theorem T1: forall x y r, (plus x y) = r -> (Add x y r).
Proof.
intros x y. induction y.
simpl. intros r H. rewrite H. apply add_z.
intro r. case r.
simpl. intro H. discriminate H.
simpl. intros n H. apply add_s. apply IHy. apply injectivity. apply H.
Qed.

How to give a counterxample in Coq?

Is it possible to give a counterexample for a statement which doesn't hold in general? Like, for example that the all quantor does not distribute over the connective "or". How would you state that to begin with?
Parameter X : Set.
Parameter P : X -> Prop.
Parameter Q : X -> Prop.
(* This holds in general *)
Theorem forall_distributes_over_and
: (forall x:X, P x /\ Q x) -> ((forall x:X, P x) /\ (forall x:X, Q x)).
Proof.
intro H. split. apply H. apply H.
Qed.
(* This doesn't hold in general *)
Theorem forall_doesnt_distributes_over_or
: (forall x:X, P x \/ Q x) -> ((forall x:X, P x) \/ (forall x:X, Q x)).
Abort.
Here is a quick and dirty way to prove something similar to what you want:
Theorem forall_doesnt_distributes_over_or:
~ (forall X P Q, (forall x:X, P x \/ Q x) -> ((forall x:X, P x) \/ (forall x:X, Q x))).
Proof.
intros H.
assert (X : forall x : bool, x = true \/ x = false).
destruct x; intuition.
specialize (H _ (fun b => b = true) (fun b => b = false) X).
destruct H as [H|H].
now specialize (H false).
now specialize (H true).
Qed.
I have to quantify X P and Q inside the negation in order to be able to provide the one I want. You couldn't quite do that with your Parameters as they somehow fixed an abstract X, P and Q, thus making your theorem potentially true.
In general, if you want to produce a counterexample, you can state the negation of the formula and then prove that this negation is satisfied.