Are there any tactics to work with preconditions with "and"? - coq

My goal is like below. Are there any tactics to solve these trivial goals?
Goal forall A (x : A) P Q,
(forall y, P y /\ Q y) ->
Q x.
Proof.
intros. intuition. auto.
Abort.
(* a more complex version *)
Goal forall A (x : A) P Q R,
(forall y, R -> P y /\ Q y) ->
R ->
Q x.
Proof.
intros. intuition. auto.
Abort.

The tactic intuition does not work because that tactic is designed for propositional logic (i.e. it dos not the quantifier in forall y, R -> ... There is another tactic for this, it is called firstorder. Try it!

Related

What does the tactic destruct do in the proof below?

I was reading the series Software Foundations by Benjamin Pierce. And in the Chapter Logic in the first book I came across a problem.
In the proof of the theorem
Theorem not_exists_dist :
excluded_middle ->
forall (X:Type) (P : X -> Prop),
~ (exists x, ~ P x) -> (forall x, P x).
where excluded_middle refers to
Definition excluded_middle := forall P : Prop,
P \/ ~ P.
And the proof of theorem can be as follows:
Proof.
unfold excluded_middle.
intros exmid X P H x.
destruct (exmid (P x)) as [H1 | H2].
- apply H1.
- destruct H.
exists x. apply H2.
Qed.
What puzzled me is the destruct H in the second case. What does the tactic destruct do here? It seems different from What I've known about it before.
(H here is ~ (exists x : X, ~ P x)).
After using destruct H, the subgoal is tranformed from P x into exists x : X, ~ P x.
When you destruct a term of the form A -> B you get a goal for A and the goals for what destruct B would result in. not A is defined as A -> False so B is False in your case and destruct B results in no goals. So you end up with just A.
Here is a long form proof of what is going on:
Theorem not_exists_dist :
excluded_middle ->
forall (X:Type) (P : X -> Prop),
~ (exists x, ~ P x) -> (forall x, P x).
Proof.
unfold excluded_middle.
intros exmid X P H x.
destruct (exmid (P x)) as [H1 | H2].
- apply H1.
- assert(ex (fun x : X => not (P x))) as H3.
exists x. apply H2.
specialize (H H3).
destruct H.
Qed.

Coq: Induction on associated variable

I can figure out how to prove my "degree_descent" Theorem below if I really need to:
Variable X : Type.
Variable degree : X -> nat.
Variable P : X -> Prop.
Axiom inductive_by_degree : forall n, (forall x, S (degree x) = n -> P x) -> (forall x, degree x = n -> P x).
Lemma hacky_rephrasing : forall n, forall x, degree x = n -> P x.
Proof. induction n; intros.
- apply (inductive_by_degree 0). discriminate. exact H.
- apply (inductive_by_degree (S n)); try exact H. intros y K. apply IHn. injection K; auto.
Qed.
Theorem degree_descent : forall x, P x.
Proof. intro. apply (hacky_rephrasing (degree x)); reflexivity.
Qed.
but this "hacky_rephrasing" Lemma is an ugly and unintuitive pattern to me. Is there a better way to prove degree_descent all by itself? For example, using set or pose to introduce n := degree x and then invoking induction n isn't working because it annihilates the hypothesis from the subsequent contexts (if someone could explain why this occurs, too, that would be helpful!). I can't figure out how to get generalize to work with me here, either.
PS: This is just weak induction for simplicity, but ideally I would like the solution to work with custom induction schemes via induction ... using ....
It looks like you would like to use the remember tactic:
Variable X : Type.
Variable degree : X -> nat.
Variable P : X -> Prop.
Axiom inductive_by_degree : forall n, (forall x, S (degree x) = n -> P x) -> (forall x, degree x = n -> P x).
Theorem degree_descent : forall x, P x.
Proof.
intro x. remember (degree x) as n eqn:E.
symmetry in E. revert x E.
(* Goal: forall x : X, degree x = n -> P x *)
Restart. From Coq Require Import ssreflect.
(* Or ssreflect style *)
move=> x; move: {2}(degree x) (eq_refl : degree x = _)=> n.
(* ... *)

Inductive Predicate for Addition in Coq

I'm new to inductive predicates in Coq. I have learned how to define simple inductive predicates such as "even" (as in adam.chlipala.net/cpdt/html/Predicates.html) or "last" (as in http://www.cse.chalmers.se/research/group/logic/TypesSS05/resources/coq/CoqArt/inductive-prop-chap/SRC/last.v).
Now I wanted to try something slightly more complicated: to define addition as an inductive predicate, but I got stuck. I did the following:
Inductive N : Type :=
| z : N (* zero *)
| s : N -> N. (* successor *)
Inductive Add: N -> N -> N -> Prop :=
| add_z: forall n, (Add n z n)
| add_s: forall m n r, (Add m n r) -> (Add m (s n) (s r)).
Fixpoint plus (x y : N) :=
match y with
| z => x
| (s n) => (s (plus x n))
end.
And I would like to prove a simple theorem (analogously to what has been done for last and last_fun in www.cse.chalmers.se/research/group/logic/TypesSS05/resources/coq/CoqArt/inductive-prop-chap/SRC/last.v):
Theorem T1: forall x y r, (plus x y) = r -> (Add x y r).
Proof.
intros x y r. induction y.
simpl. intro H. rewrite H. apply add_z.
case r.
simpl. intro H. discriminate H.
???
But then I get stuck. The induction hypothesis seems strange. I don't know if I defined Add wrongly, or if I am just using wrong tactics. Could you please help me, by either correcting my inductive Add or telling me how to complete this proof?
You introduced r before using induction on y. In general you'll want to use induction before introducing anything so the induction hypothesis is as general as possible.
Conjecture injectivity : forall n m, s n = s m -> n = m.
Theorem T1: forall x y r, (plus x y) = r -> (Add x y r).
Proof.
intros x y. induction y.
simpl. intros r H. rewrite H. apply add_z.
intro r. case r.
simpl. intro H. discriminate H.
simpl. intros n H. apply add_s. apply IHy. apply injectivity. apply H.
Qed.

Double induction in Coq

Basically, I would like to prove that following result:
Lemma nat_ind_2 (P: nat -> Prop): P 0 -> P 1 -> (forall n, P n -> P (2+n)) ->
forall n, P n.
that is the recurrence scheme of the so called double induction.
I tried to prove it applying induction two times, but I am not sure that I will get anywhere this way. Indeed, I got stuck at that point:
Proof.
intros. elim n.
exact H.
intros. elim n0.
exact H0.
intros. apply (H1 n1).
Actually, there's a much simpler solution. A fix allows recursion (aka induction) on any subterm while nat_rect only allows recursion on the immediate subterm of a nat. nat_rect itself is defined with a fix, and nat_ind is just a special case of nat_rect.
Definition nat_rect_2 (P : nat -> Type) (f1 : P 0) (f2 : P 1)
(f3 : forall n, P n -> P (S (S n))) : forall n, P n :=
fix nat_rect_2 n :=
match n with
| 0 => f1
| 1 => f2
| S (S m) => f3 m (nat_rect_2 m)
end.
#Rui's fix solution is quite general. Here is an alternative solution that uses the following observation: when proving this lemma mentally, you use somewhat stronger induction principle. For example if P holds for two consecutive numbers it becomes easy to make it hold for the next pair:
Lemma nat_ind_2 (P: nat -> Prop): P 0 -> P 1 -> (forall n, P n -> P (2+n)) ->
forall n, P n.
Proof.
intros P0 P1 H.
assert (G: forall n, P n /\ P (S n)).
induction n as [ | n [Pn PSn]]; auto.
split; try apply H; auto.
apply G.
Qed.
Here G proves something redundant, yet calling the induction tactic for it brings sufficient context for near-trivial proof.
I think well-founded induction is necessary for that.
Require Import Arith.
Theorem nat_rect_3 : forall P,
(forall n1, (forall n2, n2 < n1 -> P n2) -> P n1) ->
forall n, P n.
Proof.
intros P H1 n1.
apply Acc_rect with (R := lt).
info_eauto.
induction n1 as [| n1 H2].
apply Acc_intro. intros n2 H3. Check lt_n_0. Check (lt_n_0 _). Check (lt_n_0 _ H3). destruct (lt_n_0 _ H3).
destruct H2 as [H2]. apply Acc_intro. intros n2 H3. apply Acc_intro. intros n3 H4. apply H2. info_eauto with *.
Defined.
Theorem nat_rect_2 : forall P,
P 0 ->
P 1 ->
(forall n, P n -> P (S (S n))) ->
forall n, P n.
Proof.
intros ? H1 H2 H3.
induction n as [n H4] using nat_rect_3.
destruct n as [| [| n]].
info_eauto with *.
info_eauto with *.
info_eauto with *.
Defined.
A fun observation: Rui's answer is the fixpoint translation of NonNumeric's answer, which is the generalization of user1861759's answer for any n, not just n = 2.
In other words, these answers are all fine, and actually deeply related to one another, by the correspondence between terminating fixpoints and generalized induction.

How to give a counterxample in Coq?

Is it possible to give a counterexample for a statement which doesn't hold in general? Like, for example that the all quantor does not distribute over the connective "or". How would you state that to begin with?
Parameter X : Set.
Parameter P : X -> Prop.
Parameter Q : X -> Prop.
(* This holds in general *)
Theorem forall_distributes_over_and
: (forall x:X, P x /\ Q x) -> ((forall x:X, P x) /\ (forall x:X, Q x)).
Proof.
intro H. split. apply H. apply H.
Qed.
(* This doesn't hold in general *)
Theorem forall_doesnt_distributes_over_or
: (forall x:X, P x \/ Q x) -> ((forall x:X, P x) \/ (forall x:X, Q x)).
Abort.
Here is a quick and dirty way to prove something similar to what you want:
Theorem forall_doesnt_distributes_over_or:
~ (forall X P Q, (forall x:X, P x \/ Q x) -> ((forall x:X, P x) \/ (forall x:X, Q x))).
Proof.
intros H.
assert (X : forall x : bool, x = true \/ x = false).
destruct x; intuition.
specialize (H _ (fun b => b = true) (fun b => b = false) X).
destruct H as [H|H].
now specialize (H false).
now specialize (H true).
Qed.
I have to quantify X P and Q inside the negation in order to be able to provide the one I want. You couldn't quite do that with your Parameters as they somehow fixed an abstract X, P and Q, thus making your theorem potentially true.
In general, if you want to produce a counterexample, you can state the negation of the formula and then prove that this negation is satisfied.