How to seperate BlueStore from ceph and run it solely? - ceph

I am learning BlueStore. I want to run it so that I could get a concrete workflow. However, BlueStore is integrated into CEPH which makes it difficult for me to focus only on what I interest.
So how could I separate BlueStore from CEPH and run it solely?

Related

Tomcat in k8s pod and db in cloud - slow connection

I have tomcat, zookeeper and kafka deployled in local k8s(kind) cluster. The database is remote i.e. in cloud. The pages load very slowly.
But when i moved tomcat outside of the pod and started manually with zk and kafka in local k8s cluster and db in remote cloud the pages are loading fine.
Why is Tomcat very slow when inside a Kubernetes pod?
In theory, a program running in a container can run as fast as a program running on the host machine.
In practice, there are many things that can affect the performance.
When running on Windows or macOS (for instance with Docker Desktop), container doesn't run directly on the machine, but in a small Linux virtual machine. This VM will add a bit of overhead, and it might not have as much CPU and RAM as the host environment. One way to have a look at the resource usage of containers is to use docker stats; or docker run -ti --pid host alpine and then use classic UNIX tools like free, top, vmstat, ... to see the resource usage in the VM.
In most environments (at least with Docker, and with Kubernetes clusters in their most common default configurations), containers run without resource constraints and limits. However, it is fairly common (and, in fact, highly recommended!) to set resource requests and limits when running containers on Kubernetes. You can check resource limits of a pod with kubectl describe. If metrics-server is installed (which is recommended, even on dev/staging environments), you can check resource usage with kubectl top. Tools like k9s will show you resource requests, limits, and usage in a comprehensive way (as long as the data is available; i.e. you still need to install metrics-server to obtain pod metrics, for instance).
In addition to the VM overhead described above, if the container does a lot of I/O (whether it's disk or network), there might be a bit of overhead in comparison to a native process. This can become noticeable if the container writes on the container copy-on-write filesystem (instead of a volume), especially when using the device-mapper storage driver.
Applications that use "live reload" techniques (that automatically rebuild or restart when source code is edited) are particularly prone to this I/O issue, because there are unfortunately no efficient methods to watch file modifications across a virtual machine boundary. This means that many web frameworks exhibit extreme performance degradations when running in containers on Mac or Windows when the source code is mounted to the container.
In addition to these factors, there can be other subtle differences that might affect the overall performance of a containerized application. When observing performance issues, it is very helpful to use a profiler (or some kind of APM solution) to see which parts of the code take longer to execute. If no profiler or APM is available, try to execute individual portions of the code independently to compare their performance. For instance, have a small piece of code that executes a single query to the database; or executes a single task from a job queue, etc.
Good luck!

How can I fix ceph commands hanging after a reboot?

I'm pretty new to Ceph, so I've included all my steps I used to set up my cluster since I'm not sure what is or is not useful information to fix my problem.
I have 4 CentOS 8 VMs in VirtualBox set up to teach myself how to bring up Ceph. 1 is a client and 3 are Ceph monitors. Each ceph node has 6 8Gb drives. Once I learned how the networking worked, it was pretty easy.
I set each VM to have a NAT (for downloading packages) and an internal network that I called "ceph-public". This network would be accessed by each VM on the 10.19.10.0/24 subnet. I then copied the ssh keys from each VM to every other VM.
I followed this documentation to install cephadm, bootstrap my first monitor, and added the other two nodes as hosts. Then I added all available devices as OSDs, created my pools, then created my images, then copied my /etc/ceph folder from the bootstrapped node to my client node. On the client, I ran rbd map mypool/myimage to mount the image as a block device, then used mkfs to create a filesystem on it, and I was able to write data and see the IO from the bootstrapped node. All was well.
Then, as a test, I shutdown and restarted the bootstrapped node. When it came back up, I ran ceph status but it just hung with no output. Every single ceph and rbd command now hangs and I have no idea how to recover or properly reset or fix my cluster.
Has anyone ever had the ceph command hang on their cluster, and what did you do to solve it?
Let me share a similar experience. I also tried some time ago to perform some tests on Ceph (mimic i think) an my VMs on my VirtualBox acted very strange, nothing comparing with actual bare metal servers so please bare this in mind... the tests are not quite relevant.
As regarding your problem, try to see the following:
have at least 3 monitors (or an even number). It's possible that hang is because of monitor election.
make sure the networking part is OK (separated VLANs for ceph servers and clients)
DNS is resolving OK. (you have added the servername in hosts)
...just my 2 cents...

How to start pods on demand in Kubernetes?

I need to create pods on demand in order to run a program. it will run according to the needs, so it could be that for 5 hours there will be nothing running, and then 10 requests will be needed to process, and I might need to limit that only 5 will run simultaneously because of resources limitations.
I am not sure how to build such a thing in kubernetes.
Also worth noting is that I would like to create a new docker container for each run and exit the container when it ends.
There are many options and you’ll need to try them out. The core tool is HorizontalPodAutoscaler. Systems like KEDA build on top of that to manage metrics more easily. There’s also Serverless tools like knative or kubeless. Or workflow tools like Tekton, Dagster, or Argo.
It really depends on your specifics.

Best way to deploy long-running high-compute app to GCP

I have a python app that builds a dataset for a machine learning task on GCP.
Currently I have to start an instance of a VM that we have, and then SSH in, and run the app, which will complete in 2-24 hours depending on the size of the dataset requested.
Once the dataset is complete the VM needs to be shutdown so we don't incur additional charges.
I am looking to streamline this process as much as possible, so that we have a "1 click" or "1 command" solution, but I'm not sure the best way to go about it.
From what I've read about so far it seems like containers might be a good way to go, but I'm inexperienced with docker.
Can I setup a container that will pip install the latest app from our private GitHub and execute the dataset build before shutting down? How would I pass information to the container such as where to get the config file etc? It's conceivable that we will have multiple datasets being generated at the same time based on different config files.
Is there a better gcloud feature that suits our purpose more effectively than containers?
I'm struggling to get information regarding these basic questions, it seems like container tutorials are dominated by web apps.
It would be useful to have a batch-like container service that runs a container until its process completes. I'm unsure whether such a service exists. I'm most familiar with Google Cloud Platform and this provides a wealth of compute and container services. However -- to your point -- these predominantly scale by (HTTP) requests.
One possibility may be Cloud Run and to trigger jobs using Cloud Pub/Sub. I see there's async capabilities too and this may be interesting (I've not explored).
Another runtime for you to consider is Kubernetes itself. While Kubernetes requires some overhead in having Google, AWS or Azure manage a cluster for you (I strongly recommend you don't run Kubernetes yourself) and some inertia in the capacity of the cluster's nodes vs. the needs of your jobs, as you scale the number of jobs, you will smooth these needs. A big advantage with Kubernetes is that it will scale (nodes|pods) as you need them. You tell Kubernetes to run X container jobs, it does it (and cleans-up) without much additional management on your part.
I'm biased and approach the container vs image question mostly from a perspective of defaulting to container-first. In this case, you'd receive several benefits from containerizing your solution:
reproducible: the same image is more probable to produce the same results
deployability: container run vs. manage OS, app stack, test for consistency etc.
maintainable: smaller image representing your app, less work to maintain it
One (beneficial!?) workflow change if you choose to use containers is that you will need to build your images before using them. Something like Knative combines these steps but, I'd stick with doing-this-yourself initially. A common solution is to trigger builds (Docker, GitHub Actions, Cloud Build) from your source code repo. Commonly you would run tests against the images that are built but you may also run your machine-learning tasks this way too.
Your containers would container only your code. When you build your container images, you would pip install, perhaps pip install --requirement requirements.txt to pull the appropriate packages. Your data (models?) are better kept separate from your code when this makes sense. When your runtime platform runs containers for you, you provide configuration information (environment variables and|or flags) to the container.
The use of a startup script seems to better fit the bill compared to containers. The instance always executes startup scripts as root, thus you can do anything you like, as the command will be executed as root.
A startup script will perform automated tasks every time your instance boots up. Startup scripts can perform many actions, such as installing software, performing updates, turning on services, and any other tasks defined in the script.
Keep in mind that a startup script cannot stop an instance but you can stop an instance through the guest operating system.
This would be the ideal solution for the question you posed. This would require you to make a small change in your Python app where the Operating system shuts off when the dataset is complete.
Q1) Can I setup a container that will pip install the latest app from our private GitHub and execute the dataset build before shutting down?
A1) Medium has a great article on installing a package from a private git repo inside a container. You can execute the dataset build before shutting down.
Q2) How would I pass information to the container such as where to get the config file etc?
A2) You can use ENV to set an environment variable. These will be available within the container.
You may consider looking into Docker for more information about container.

NixOS within NixOS?

I'm starting to play around with NixOS deployments. To that end, I have a repo with some packages defined, and a configuration.nix for the server.
It seems like I should then be able to test this configuration locally (I'm also running NixOS). I imagine it's a bad idea to change my global configuration.nix to point to the deployment server's configuration.nix (who knows what that will break); but is there a safe and convenient way to "try out" the server locally - i.e. build it and either boot into it or, better, start it as a separate process?
I can see docker being one way, of course; maybe there's nothing else. But I have this vague sense Nix could be capable of doing it alone.
There is a fairly standard way of doing this that is built into the default system.
Namely nixos-rebuild build-vm. This will take your current configuration file (by default /etc/nixos/configuration.nix, build it and create a script allowing you to boot the configuration into a virtualmachine.
once the script has finished, it will leave a symlink in the current directory. You can then boot by running ./result/bin/run-$HOSTNAME-vm which will start a boot of your virtualmachine for you to play around with.
TLDR;
nixos-rebuild build-vm
./result/bin/run-$HOSTNAME-vm
nixos-rebuild build-vm is the easiest way to do this, however; you could also import the configuration into a NixOS container (see Chapter 47. Container Management in the NixOS manual and the nixos-container command).
This would be done with something like:
containers.mydeploy = {
privateNetwork = true;
config = import ../mydeploy-configuration.nix;
};
Note that you would not want to specify the network configuration in mydeploy-configuration.nix if it's static as that could cause conflicts with the network subnet created for the container.
As you may already know, system configurations can coexist without any problems in the Nix store. The problem here is running more than one system at once. For this, you need an isolation or virtualization tools like Docker, VirtualBox, etc.
NixOS Containers
NixOS provides an efficient implementation of the container concept, backed by systemd-nspawn instead of an image-based container runtime.
These can be specified declaratively in configuration.nix or imperatively with the nixos-container command if you need more flexibility.
Docker
Docker was not designed to run an entire operating system inside a container, so it may not be the best fit for testing NixOS-based deployments, which expect and provide systemd and some services inside their units of deployment. While you won't get a good NixOS experience with Docker, Nix and Docker are a good fit.
UPDATE: Both 'raw' Nix packages and NixOS run in Docker. For example, Arion supports images from plain Nix, NixOS modules and 'normal' Docker images.
NixOps
To deploy NixOS inside NixOS it is best to use a technology that is designed to run a full Linux system inside.
It helps to have a program that manages the integration for you. In the Nix ecosystem, NixOps is the first candidate for this. You can use NixOps with its multiple backends, such as QEMU/KVM, VirtualBox, the (currently experimental) NixOS container backend, or you can use the none backend to deploy to machines that you have created using another tool.
Here's a complete example of using NixOps with QEMU/KVM.
Tests
If the your goal is to run automated integration tests, you can make use of the NixOS VM testing framework. This uses Linux KVM virtualization (expose /dev/kvm in sandbox) to run integrations test on networks of virtual machines, and it runs them as a derivation. It is quite efficient because it does not have to create virtual machine images because it mounts the Nix store in the VM. These tests are "built" like any other derivation, making them easy to run.
Nix store optimization
A unique feature of Nix is that you can often reuse the host Nix store, so being able to mount a host filesystem in the container/vm is a nice feature to have in your solution. If you are creating your own solutions, depending on you needs, you may want to postpone this optimization, because it becomes a bit more involved if you want the container/vm to be able to modify the store. NixOS tests solve this with an overlay file system in the VM. Another approach may be to bind mount the Nix store forward the Nix daemon socket.