Pre/Post-Handler Hook for Micronaut - rest

I was wondering if there is some way to provide two methods to Micronaut which are guaranteed to run before and after a request was passed to the handler.
In my case, this would be to initialize some thread-local data.
I know this would also be possible to put in the handler itself but putting the same lines of code in every handler isn't really the greatest solution.

Use a filter - see the docs at https://docs.micronaut.io/latest/guide/#filters

Related

The task scheduling problem of Flink, in Flink, how to place subtasks in a slot of the specified task manager?

Recently, I am studying the problem of task scheduling in Flink. My purpose is to schedule subtasks to a slot of the specified node according to my own needs by modifying some source codes of the scheduling part. Through remote debugging and checking the source code, I found the following method call stack, most of which I can't understand (the comments are a little less), especially in this method: org.apache.flink.runtime.jobmaster.slotpool.SchedulerImpl#allocateMultiTaskSlot. I guess the code that allocates slots to tasks is around here. Because it is too difficult to read the source code, I have to ask you for help. Of course, if there is a better way to achieve my needs, please specify one or two. Sincerely look forward to your reply! Thank you very much!!!
The method call stack is as follows(The version of Flink I use is 1.11.1):
org.apache.flink.runtime.jobmaster.JobMaster#startJobExecution
org.apache.flink.runtime.jobmaster.JobMaster#resetAndStartScheduler
org.apache.flink.runtime.jobmaster.JobMaster#startScheduling
org.apache.flink.runtime.scheduler.SchedulerBase#startScheduling
org.apache.flink.runtime.scheduler.DefaultScheduler#startSchedulingInternal
org.apache.flink.runtime.scheduler.strategy.EagerSchedulingStrategy#startScheduling
(This is like the method call chain of PipelinedRegionSchedulingStrategy class. In order to simply write it as the method call chain of EagerSchedulingStrategy class, it should have no effect)
org.apache.flink.runtime.scheduler.strategy.EagerSchedulingStrategy#allocateSlotsAndDeploy
org.apache.flink.runtime.scheduler.DefaultScheduler#allocateSlotsAndDeploy
org.apache.flink.runtime.scheduler.DefaultScheduler#allocateSlots
org.apache.flink.runtime.scheduler.DefaultExecutionSlotAllocator#allocateSlotsFor
org.apache.flink.runtime.executiongraph.SlotProviderStrategy.NormalSlotProviderStrategy#allocateSlot
org.apache.flink.runtime.jobmaster.slotpool.SchedulerImpl#allocateSlot
org.apache.flink.runtime.jobmaster.slotpool.SchedulerImpl#allocateSlotInternal
org.apache.flink.runtime.jobmaster.slotpool.SchedulerImpl#internalAllocateSlot
org.apache.flink.runtime.jobmaster.slotpool.SchedulerImpl#allocateSharedSlot
org.apache.flink.runtime.jobmaster.slotpool.SchedulerImpl#allocateMultiTaskSlot
(I feel that this is the key to allocate slot for subtask, that is, execution vertex, but there is no comment, and I don't understand the process idea, so I can't understand it.)

How to do a CNAME record lookup in swift

I found some example code online that I'm trying to use to do a CNAME record lookup (notice that I pass a callback block that I want to be run):
DNSServiceQueryRecord(serviceRef, 0, 0, domainName, UInt16(kDNSServiceType_CNAME), UInt16(kDNSServiceClass_IN), callback, &mutableCompletionHandler);
DNSServiceProcessResult(serviceRef.pointee)
The problem is that this code is getting blocked at DNSServiceProcessResult(serviceRef.pointee) and the callback is never called. According to Apple's documentation for DNSServiceProcessResult, I need to
Use DNSServiceRefSockFD in conjunction with a run loop or select() to determine the presence of a response from the server before calling this function to process the reply without blocking.
So I looked at DNSServiceRefSockFD and found that I could create a dnssd_sock_t with DNSServiceRefSockFD(serviceRef.pointee). But now that I have the socket, I'm not sure how to "use it in conjunction with a run loop" as an event source for the run loop (according to the DNSServiceRefSockFD documentation).
I'm just not understanding how this works. I don't understand how to use the dnsssd_sock_t as an event source to a run loop so that I can call DNSServiceProcessResult at the right time without blocking so that my callback will actually run.
If it's better to use the socket as a kqueue event source or in a select() loop (as the documentation mentions), I'm fine with that, but I don't know how to do that either.
CoreFoundation can be quite cryptic, so any help is much appreciated!
And if there's a better way to do a CNAME record lookup then, by all means, please share!
See my (ethan-gerardot) comments on https://gist.github.com/fikeminkel/a9c4bc4d0348527e8df3690e242038d3
The first paragraph answers how to get the callback to be called without blocking.

hunchentoot session- v. thread-localized values (ccl)

I'm using hunchentoot session values to make my server code re-entrant. Problem is that session values are, by definition, retained during the session, i.e., from one call from the same browser to the next, whereas what I really am looking for is what amount to thread-specific re-entrancy, so that all the values disappear between calls -- I want to treat each click as a separate "from scratch" event, even if they are from the same session . Easy enough to have the driver either set to nil, or delete my session values, but I'm wondering if there's a "correct" way to do this? I don't see any thread-based analog to hunchentoot:session-value in the documentation.
Thanks in advance for any guidance you can offer.
If you want a value to be "thread specific" and at the same time to be "from scratch" on every request, that requires that every request must be dispatched in a brand new thread. This is not the case according to the Hunchentoot documentation, which says that two models are supported: a single-threaded taskmaster and a thread-per-connection taskmaster.
If your configuration is multi-threaded, then a thread-specific variable bound in a request-handling can therefore be expected to be per-connection. In a single-threaded Hunchentoot setup, it will effectively be global, tied to the request servicing thread.
A thread-based analog to hunchentoot:session-value probably doesn't exist because it would only introduce behaviors into the web app which surprisingly change if the threading model is reconfigured, or if the request pattern from the browser changes. A browser can make multiple requests using the same connection, or close the connection between requests.
To extend the request objects with custom per-request, I would look into, perhaps, subclassing from the acceptor (how to do this is described in the docs). My custom acceptor would have a custom method of the process-connection generic function which would create extended/subclasses request objects carrying the extra stuff I wanted to put into a request.
Another way would be to have some global weak hash which binds request objects as keys to additional information.

In protractor , when to use protractor.promise.controlFlow() >

I'm confused when to use
var flow = protractor.promise.controlFlow()
in protractor scripts and also I can see a method called execute method flow.execute().
Can Any one give me some example and elaborate above statement
You shouldn't normally need to use the controlFlow yourself unless you are trying to add some asynchronous code into the middle of other webdriver operations. You would basically have to wrap that asynchronous code inside of a promise and the pass that promise/function into the flow.execute(). Here is a good link with more information about Control Flow in WebdriverJS
https://github.com/SeleniumHQ/selenium/wiki/WebDriverJs#control-flows

Non-RESTful backend with backbone.js

I'm evaluating backbone.js as a potential javascript library for use in an application which will have a few different backends: WebSocket, REST, and 3rd party library producing JSON. I've read some opinions that backbone.js works beautifully with RESTful backends so long as the api is 'by the book' and follows the appropriate http verbage. Can someone elaborate on what this means?
Also, how much trouble is it to get backbone.js to connect to WebSockets? Lastly, are there any issues with integrating a backbone.js model with a function which returns JSON - in other words does the data model always need to be served via REST?
Backbone's power is that it has an incredibly flexible and modular structure. It means that any part of Backbone you can use, extend, take out, or modify. This includes the AJAX functionality.
Backbone doesn't "care" where do you get the data for your collections or models. It will help you out by providing an out of the box RESTful "ajax" solution, but it won't be mad if you want to use something else!
This allows you to find (or write) any plugin you want to handle the server interaction. Just look on backplug.io, Google, and Github.
Specifically for Sockets there is backbone.iobind.
Can't find a plugin, no worries. I can tell you exactly how to write one (it's 100x easier than it sounds).
The first thing that you need to understand is that overwriting behavior is SUPER easy. There are 2 main ways:
Globally:
Backbone.Collection.prototype.sync = function() {
//screw you Backbone!!! You're completely useless I am doing my own thing
}
Per instance
var MySpecialCollection = Backbone.Collection.extend({
sync: function() {
//I like what you're doing with the ajax thing... Clever clever ;)
// But for a few collections I wanna do it my way. That cool?
});
And the only other thing you need to know is what happens when you call "fetch" on a collection. This is the "by the book"/"out of the box behavior" behavior:
collection#fetch is triggered by user (YOU). fetch will delegate the ACTUAL fetching (ajax, sockets, local storage, or even a function that instantly returns json) to some other function (collection#sync). Whatever function is in collection.sync has to has to take 3 arguments:
action: create (for creating), action: read (for fetching), delete (for deleting), or update (for updating) = CRUD.
context (this variable) - if you don't know what this does it, don't worry about it, not important for now
options - where da magic is. We only care about 1 option though
success: a callback that gets called when the data is "ready". THIS is the callback that collection#fetch is interested in because that's when it takes over and does it's thing. The only requirements is that sync passes it the following 1st argument
response: the actual data it got back
Now
has to return a success callback in it's options that gets executed when it's done getting the data. That function what it's responsible for is
Whenever collection#sync is done doing it's thing, collection#fetch takes back over (with that callback in passed in to success) and does the following nifty steps:
Calls set or reset (for these purposes they're roughly the same).
When set finishes, it triggers a sync event on the collection broadcasting to the world "yo I'm ready!!"
So what happens in set. Well bunch of stuff (deduping, parsing, sorting, parsing, removing, creating models, propagating changesand general maintenance). Don't worry about it. It works ;) What you need to worry about is how you can hook in to different parts of this process. The only two you should worry about (if your wraps data in weird ways) are
collection#parse for parsing a collection. Should accept raw JSON (or whatever format) that comes from the server/ajax/websocket/function/worker/whoknowwhat and turn it into an ARRAY of objects. Takes in for 1st argument resp (the JSON) and should spit out a mutated response for return. Easy peasy.
model#parse. Same as collection but it takes in the raw objects (i.e. imagine you iterate over the output of collection#parse) and splits out an "unwrapped" object.
Get off your computer and go to the beach because you finished your work in 1/100th the time you thought it would take.
That's all you need to know in order to implement whatever server system you want in place of the vanilla "ajax requests".