Surface Viewer of Matlab - Need explanation - matlab

How can this surface viewer be explained? in other words, how can we describe/explain this graph in words?
click here for image

The attached plot represents a 2-input, 2-output function where the two inputs are "distance" and "angle" while the two outputs are unknown quantities - one ranging between around -80 to +120 while the other output is described in terms of color by a colorbar that is not provided in the linked image.

Related

create the pixel size for Dicom_Picture in matlab

I have pictures in .dcm format. From Dicominfo I learned that the pixel spacing is [0.9,0.9] mm and the slice thickness is 1.98 mm.
My task: I should get the picture size in real (world) coordinates and then display the pictures in all three projections in matlab.
I had an idea that I would create a matrix in matlab, but it is difficult for me to create the pixel size spacing.
I mean that the pixel in the matrix is like a square and is 0.9mm * 0.9mm.
I don't know if my approach is correct and if there is an easy way to solve the problem.
Thank you very much for every answer
several plotting functions allow you to specify x/y/z positions of each pixel/voxel, including imagesc, pcolor, here is an example using imagesc.
% vol stores your dicom volume
vol=rand(40,50,30);
dx=[0.9,0.9,1.98];
imagesc((0:size(vol,1)-1)*dx(1), (0:size(vol,2)-1)*dx(2), vol(:,:,1))

How to check if two shapes in a binary image are similar in MATLAB?

I have two binary images, each of which have a single white filled parallelogram and a black background. The only difference between the two images is that the parallelograms are in different locations and are slightly different from one another in shape. All the parameters between the two images are the same except for that one change.
I want to check how similar the shape of the two parallelograms are, by using some sort of comparing measure.
I looked into ssimval function in MATLAB but it seems to be taking the whole image into consideration rather than just the white blobs. Is there any other function I can use for this purpose?
For visually checking similarity, you can plot their probability density function and for numeric similarity, compute some similarity measure, such as, KL Divergence, etc.
In a simple way, you can segment your binary image with simple bwlabel function. Then use regionprops function to find perimeter and area of your desire segment. Moreover, center of region is also another comparison point.
You could do it with polygons, by using the polyshape class.
First convert the binary mask to a set of corner points. You can do it with a convex hull, by calling regionprops(bwI, 'ConvexHull').
Then convert the corner points into polygons, by calling polyshape.
Finally measure the dissimiliarities of the polygons by measuring their turning distance. Turning distance is rotation- and scaling invariant, so you might want to add additive terms to your distance metric for those if your problem demands it.
A very simple solution for comparing two binary image is using boolean operations.
Your images contains zero and one values. so If you use boolean operation.
suppose your two images are : B1 , B2
C = B1 & (~B2)
if sum(C(:))==0
% two image are same
else
% two image are different
end

MATLAB: Digitizing a plot with multiple variables and implementing the data

I have 8 plots which I want to implement in my Matlab code. These plots originate from several research papers, hence, I need to digitize them first in order to be able to use them.
An example of a plot is shown below:
This is basically a surface plot with three different variables. I know how to digitize a regular plot with just X and Y coordinates. However, how would one digitize a graph like this? I am quite unsure, hence, the question.
Also, If I would be able to obtain the data from this plot. How would you be able to utilize it in your code? Maybe with some interpolation and extrapolation between the given data points?
Any tips regarding this topic are welcome.
Thanks in advance
Here is what I would suggest:
Read the image in Matlab using imread.
Manually find the pixel position of the left bottom corner and the upper right corner
Using these pixels values and the real numerical value, it is simple to determine the x and y value of every pixel. I suggest you use meshgrid.
Knowing that the curves are in black, then remove every non-black pixel from the image, which leaves you only with the curves and the numbers.
Then use the function bwareaopen to remove the small objects (the numbers). Don't forget to invert the image to remove the black instead of the white.
Finally, by using point #3 and the result of point #6, you can manually extract the data of the graph. It won't be easy, but it will be feasible.
You will need the data for the three variables in order to create a plot in Matlab, which you can get either from the previous research or by estimating and interpolating values from the plot. Once you get the data though, there are two functions that you can use to make surface plots, surface and surf, surf is pretty much the same as surface but includes shading.
For interpolation and extrapolation it sounds like you might want to check out 2D interpolation, interp2. The interp2 function can also do extrapolation as well.
You should read the documentation for these functions and then post back with specific problems if you have any.

Digitize a file showing spatial area using Matlab

I have the following scanned image of an area which I want to digitize in terms of coordinates and depths, where depths are shown in terms of contour lines. The depths are shown in the above image by the number over the contour line. I would like to divide this image in terms of grids/pixels and get two data - representing it's (x, y) coordinates and depth - for every grid/pixel.
Is there some Matlab function or File Exchange in Matlab that can be used to perform this task than doing manually? I would like to perform this task faster than if it were to be done manually. Thanks!

5-dimensional plotting in matlab for classification

I want to create a 5 dimensional plotting in matlab. I have two files in my workspace. one is data(150*4). In this file, I have 150 data and each has 4 features. Since I want to classify them, I have another file called "labels" (150*1) that includes a label for each data in data files. In other words the label are the class of data and I have 3 class: 1,2,3
I want to plot this classification, but i can't...
Naris
You need to think about what kind of plot you want to see. 5 dimensions are difficult to visualize, unless of course, your hyper-dimensional monitor is working. Mine never came back from the repair shop. (That should teach me for sending it out.)
Seriously, 5 dimensional data really can be difficult to visualize. The usual solution is to plot points in a 2-d space (the screen coordinates of a figure, for example. This is what plot essentially does.) Then use various attributes of the points plotted to show the other three dimensions. This is what Chernoff faces do for you. If you have the stats toolbox, then it looks like glyphplot will help you out. Or you can plot in 3-d, then use two attributes to show the other two dimensions.
Another idea is to plot points in 2-d to show two of the dimensions, then use color to indicate the other three dimensions. Thus, the RGB assigned to that marker will be defined by the other three dimensions. Of course, that means you must be able to visualize what the RGB coordinates of a color represent, so you need to understand color as it is represented in an RGB space.
You can use scatter3 to plot your data, using three features of data as dimensions, the fourth as color, and the class as different markers
figure,hold on
markerList = 'o*+';
for iClass = 1:nClasses
classIdx = dataClass==iClass;
scatter3(data(classIdx,1),data(classIdx,2),data(classIdx,3),[],data(classIdx,4),...
'marker',markerList(iClass));
end
When you use color to represent one of the features, I suggest to use a good colormap, such as pmkmp from the Matlab File Exchange instead of the default jet.
Alternatively, you can use e.g. mdscale to transform your higher-dimensional data to 2D for standard plotting.
There's a model called SOM (Self-organizing Maps) which builds a 2-D image of a multidimensional space.