Dart: What's the actual use of Future.sync()? Rather just run the closure without it? - flutter

From what I can tell reading up about Future.sync(), it simply runs the closure supplied to it. I can't imagine a scenario where this might be useful.
So essentially the following two lines of code does the same thing and would be executed at the same time were the one replaced by the other:
Future.sync(() => Print('immediately'));
Print('also immediately');
Has anyone ever used a Future.sync() for anything useful? Could you describe the scenario?

Related

AppleScript pass expression into function to be re-evaluated repeatedly? (or: AppleScript handler with callback?)

I think the correct description for what I'm trying to do is be able to pass an expression or function/handler into another handler as a parameter/argument. Some code to be evaluated inside the receiving handler. Similar to Javascript callbacks, I think.
For example, something like this:
on waitFor(theConditionExpression)
timeout_start(5) -- start a 5 second timer
repeat until (theConditionExpression or timeout_isExpired())
delay 0.1
end repeat
return theConditionExpression
end waitFor
theConditionExpression should be some expression or function that evaluates to a boolean result.
not really relevant to the question, but just FYI, timeout_start(…) and timeout_isExpired() are two simple handlers I've written that do exactly what they say. (…start() doesn't return anything, …isExpired() returns a boolean).
Of course, typically if I pass in some boolean expression, it will evaluate that expression once, at the time I pass it in. But I want it to evaluate it every time it's referenced in the code inside the handler.
Some languages (not sure about AS) have some kind of eval() function that you can pass it some code as a string and it will execute that string as code. Theoretically that could solve this, but: (a) I don't know if AS has anything like that, but even if it does, (b) it's not desired for various reasons (performance, injection risks, etc.)
So I'm thinking something more like eg. JavaScript's ability to pass in a function (named or anonymous) as function parameter/argument that can be re-evaluated every iteration in a loop, etc. (eg. like the compareFn argument in JS's Array.sort(compareFn)).
Can AS do anything like this, and if so how?
Thanks!
I'm going to suggest (pro forma) that an AppleScript application with an on idle handler is generally a better solution for wait conditions than a repeat/delay loop. It's more efficient for the system, and doesn't freeze up the script. But that would involve reconceptualizing your script, and I'm not certain it would work in this case, given the way you formed the problem.
There's an old but good site called AppleScript Power Handlers that shows a bunch of nifty-neato tricks for sophisticated use of AppleScript handlers: passing handlers as values or parameters; creating Script Objects within handlers; making closures and constructors. I'm pretty sure the answer to your request is in there. aLikely you'll want to set up a bunch of handlers that serve as condition expressions, then pass them as parameters to the evaluating handler. Or maybe you'll want to set up a script object containing the condition handlers and call it as needed?
At any rate, see what you can do with it, and ask more specific questions if you run into problems.

Scala future not assigned, what’s this doing?

I’m new to scala and I’m trying to make sense of what this code is doing in a codebase I want to make updates to.
Removing some of the specifics, the chunk I don’t understand is this:
I’ve seen some scala code that does things like:
val someA = something.createSomeA(....)
Future {
someA.doSomething1(....)
someA.doSomething2(.....)
}
// then log some things unrelated to the future
someA
// end of func
I don’t really understand what the future is doing in this case as it’s not assigned to anything. Could someone explain what the Future is doing here?
I know the details depend on what the doSomethings are actually doing, but could someone explain generally what this would be for? I’m only familiar with the use of Futures when they’re assigned to a variable and then checked for completion in some way at a later point.
Help would be appreciated!! (Sorry for poor formatting, I’m doing this from my phone)
Three words for you: "fire and forget".
If you understand the case, when the future is assigned to a variable, and then checked/transformed later, then you already know what's happening here: the insides of the Future are being executed asynchronously.
The only difference is that in this case it is never accessed again. Why? Probably, because nobody cares. Some operations return a result when they complete, that can be used later, others do not.
For example, if I wanted to print out a log message asynchronously, I'd write something like Future { logger.info(mymessage) } without assigning it to anything. Why? Well, I don't really care when (or even if) it completes. There is no return value I could use, and, if it fails ... well, I don't have any meaningful way to handle that, other than ignoring the error.
For an operation like this, I don't need to wait for it to complete, since it doesn't return anything useful back to me anyway. So, I can just start it, and forget. No need to assign it to anything.

How can I modify parameters of a sinamics from a PLC

I have just started to work with PLCs and I need to modify parameters of a sinamics from a PLC. I know that they may have different accesible levels and that they are modified by functions. So the question is:
Can I the parameters be directly modified?
Or if it is not possible, how do I programm and include that functions?
At least try to find some information.
http://support.automation.siemens.com/WW/view/en/34677186/136000&cspltfrm=39&cssw=0&csbinh=8
Sinamics drives parameters can be modified from the plc code using _writedriveparameter function.
One thing to remember is: never use this function in two places at the same time. If you do it the function hangs and to restore the correct working it is necessary to reboot the cpu.
Also remember to check the function result to call the function in the correct way (result 7001,7002,7003 ecc). You have to check if the function is already working or not.

What is the architecture behind Scratch programming blocks?

I need to build a mini version of the programming blocks that are used in Scratch or later in snap! or openblocks.
The code in all of them is big and hard to follow, especially in Scratch which is written in some kind of subset of SmallTalk, which I don't know.
Where can I find the algorithm they all use to parse the blocks and transform it into a set of instructions that work on something, such as animations or games as in Scratch?
I am really interested in the algorithmic or architecture behind the concept of programming blocks.
This is going to be just a really general explanation, and it's up to you to work out specifics.
Defining a block
There is a Block class that all blocks inherit from. They get initialized with their label (name), shape, and a reference to the method. When they are run/called, the associated method is passed the current context (sprite) and the arguments.
Exact implementations differ among versions. For example, In Scratch 1.x, methods took arguments corresponding to the block's arguments, and the context (this or self) is the sprite. In 2.0, they are passed a single argument containing all of the block's arguments and context. Snap! seems to follow the 1.x method.
Stack (command) blocks do not return anything; reporter blocks do.
Interpreting
The interpreter works somewhat like this. Each block contains a reference to the next one, and any subroutines (reporter blocks in arguments; command blocks in a C-slot).
First, all arguments are resolved. Reporters are called, and their return value stored. This is done recursively for lots of Reporter blocks inside each other.
Then, the command itself is executed. Ideally this is a simple command (e.g. move). The method is called, the Stage is updated.
Continue with the next block.
C blocks
C blocks have a slightly different procedure. These are the if <> style, and the repeat <> ones. In addition to their ordinary arguments, they reference their "miniscript" subroutine.
For a simple if/else C block, just execute the subroutine normally if applicable.
When dealing with loops though, you have to make sure to thread properly, and wait for other scripts.
Events
Keypress/click events can be dealt with easily enough. Just execute them on keypress/click.
Something like broadcasts can be done by executing the hat when the broadcast stack is run.
Other events you'll have to work out on your own.
Wait blocks
This, along with threading, is the most confusing part of the interpretation to me. Basically, you need to figure out when to continue with the script. Perhaps set a timer to execute after the time, but you still need to thread properly.
I hope this helps!

Is Either the equivalent to checked exceptions?

Beginning in Scala and reading about Either I naturally comparing new concepts to something I know (in this case from Java). Are there any differences from the concept of checked exceptions and Either?
In both cases
the possibility of failure is explicitly annotated in the method (throws or returning Either)
the programmer can handle the error case directly when it occurs or move it up (returning again an Either)
there is a way to inform the caller about the reason of the error
I suppose one uses for-comprehensions on Either to write code as there would be no error similar to checked exceptions.
I wonder if I am the only beginner who has problems to see the difference.
Thanks
Either can be used for more than just exceptions. For example, if you were to have a user either type input for you or specify a file containing that input, you could represent that as Either[String, File].
Either is very often used for exception handling. The main difference between Either and checked exceptions is that control flow with Either is always explicit. The compiler really won't let you forget that you are dealing with an Either; it won't collect Eithers from multiple places without you being aware of it, everything that is returned must be an Either, etc.. Because of this, you use Either not when maybe something extraordinary will go wrong, but as a normal part of controlling program execution. Also, Either does not capture a stack trace, making it much more efficient than a typical exception.
One other difference is that exceptions can be used for control flow. Need to jump out of three nested loops? No problem--throw an exception (without a stack trace) and catch it on the outside. Need to jump out of five nested method calls? No problem! Either doesn't supply anything like this.
That said, as you've pointed out there are a number of similarities. You can pass back information (though Either makes that trivial, while checked exceptions make you write your own class to store any extra information you want); you can pass the Either on or you can fold it into something else, etc..
So, in summary: although you can accomplish the same things with Either and checked exceptions with regards to explicit error handling, they are relatively different in practice. In particular, Either makes creating and passing back different states really easy, while checked exceptions are good at bypassing all your normal control flow to get back, hopefully, to somewhere that an extraordinary condition can be sensibly dealt with.
Either is equivalent to a checked exception in terms of the return signature forming an exclusive disjunction. The result can be a thrown exception X or an A. However, throwing an exception isn't equivalent to returning one – the first is not referentially transparent.
Where Scala's Either is not (as of 2.9) equivalent is that a return type is positively biased, and requires effort to extract/deconstruct the Exception, Either is unbiased; you need to explicitly ask for the left or right value. This is a topic of some discussion, and in practice a bit of pain – consider the following three calls to Either producing methods
for {
a <- eitherA("input").right
b <- eitherB(a).right
c <- eitherC(b).right
} yield c // Either[Exception, C]
you need to manually thread through the RHS. This may not seem that onerous, but in practice is a pain and somewhat surprising to new-comers.
Yes, Either is a way to embed exceptions in a language; where a set of operations that can fail can throw an error value to some non-local site.
In addition to the practical issues Rex mentioned, there's some extra things you get from the simple semantics of an Either:
Either forms a monad; so you can use monadic operations over sets of expressions that evaluate to Either. E.g. for short circuiting evaluation without having to test the result
Either is in the type -- so the type checker alone is sufficient to track incorrect handling of the value
Once you have the ability to return either an error message (Left s) or a successful value Right v, you can layer exceptions on top, as just Either plus an error handler, as is done for MonadError in Haskell.