A little discrete math problem, not sure where to even start? - discrete-mathematics

𝑓(𝑥) = 1/9𝑥^2, for 0 ≤ x ≤ 3, and
= 0, otherwise
**Determine both the expectation and variance of the continuous random variable defined above. **
My professor never addressed this topic and I just wanted a starting point.
Wasn't able to complete as I had no idea where to start.

The expected value of a random variable with probability density function f(x) is the indefinite integral from -infinity to +infinity of xf(x). For us, we find
S xf(x) dx
= S 1/9 x^3 dx
= 1/36 x^4 + C
Evaluating at x=3 and x=0 we get:
81/36 - 0/36 = 81/36 = 9/4
The variance is given by E[x^2] - E[x]^2; we already found E[x] above and we can find E[x^2] by integrating x^2 f(x):
S x^2 f(x) dx
= S 1/9 x^4 dx
= 1/45 x^5 + C
Evaluating at x=3 and x=0:
243/45 - 0/45 = 243/45 = 27/5
Now we can evaluate E[x^2] - E[x]^2:
27/5 - 81/16 = (432 - 405)/80 = 27/80
So, the variance is 27/80 and the expected value is 9/4.

Related

How to use matlab to quickly judge whether a function is convex?

For example, FX = x ^ 2 + sin (x)
Just for curiosity, I don't want to use the CVX toolbox to do this.
You can check this within some interval [a,b] by checking if the second derivative is nonnegative. For this you have to define a vector of x-values, find the numerical second derivative and check whether it is not too negative:
a = 0;
b = 1;
margin = 1e-5;
point_count = 100;
f=#(x) x.^2 + sin(x);
x = linspace(a, b, point_count)
is_convex = all(diff(x, 2) > -margin);
Since this is a numerical test, you need to adjust the parameter to the properties of the function, that is if the function does wild things on a small scale we might not be able to pick it up. E.g. with the parameters above the test will falsely report the function f=#(x)sin(99.5*2*pi*x-3) as convex.
clear
syms x real
syms f(x) d(x) d1(x)
f = x^2 + sin(x)
d = diff(f,x,2)==0
d1 = diff(f,x,2)
expSolution = solve(d, x)
if size(expSolution,1) == 0
if eval(subs(d1,x,0))>0
disp("condition 1- the graph is concave upward");
else
disp("condition 2 - the graph is concave download");
end
else
disp("condition 3 -- not certain")
end

Laguerre's method to obtain poly roots (Matlab)

I must write using Laguerre's method a piece of code to find the real and complex roots of poly:
P=X^5-5*X^4-6*X^3+6*X^2-3*X+1
I have little doubt. I did the algorithm in the matlab, but 3 out of 5 roots are the same and I don't think that is correct.
syms X %Declearing x as a variabl
P=X^5-5*X^4-6*X^3+6*X^2-3*X+1; %Equation we interest to solve
n=5; % The eq. order
Pd1 = diff(P,X,1); % first differitial of f
Pd2 = diff(P,X,2); %second differitial of f
err=0.00001; %Answear tollerance
N=100; %Max. # of Iterations
x(1)=1e-3; % Initial Value
for k=1:N
G=double(vpa(subs(Pd1,X,x(k))/subs(P,X,x(k))));
H=G^2 - double(subs(Pd2,X,x(k))) /subs(P,X,x(k));
D1= (G+sqrt((n-1)*(n*H-G^2)));
D2= (G-sqrt((n-1)*(n*H-G^2)));
D = max(D1,D2);
a=n/D;
x(k+1)=x(k)-a
Err(k) = abs(x(k+1)-x(k));
if Err(k) <=err
break
end
end
output (roots of polynomial):
x =
0.0010 + 0.0000i 0.1434 + 0.4661i 0.1474 + 0.4345i 0.1474 + 0.4345i 0.1474 + 0.4345i
What you actually see are all the values x(k) which arose in the loop. The last one, 0.1474 + 0.4345i is the end result of this loop - the approximation of the root which is in your given tolerance threshold. The code
syms X %Declaring x as a variable
P = X^5 - 5 * X^4 - 6 * X^3 + 6 * X^2 - 3 * X + 1; %Polynomial
n=5; %Degree of the polynomial
Pd1 = diff(P,X,1); %First derivative of P
Pd2 = diff(P,X,2); %Second derivative of P
err = 0.00001; %Answer tolerance
N = 100; %Maximal number of iterations
x(1) = 0; %Initial value
for k = 1:N
G = double(vpa(subs(Pd1,X,x(k)) / subs(P,X,x(k))));
H = G^2 - double(subs(Pd2,X,x(k))) / subs(P,X,x(k));
D1 = (G + sqrt((n-1) * (n * H-G^2)));
D2 = (G - sqrt((n-1) * (n * H-G^2)));
D = max(D1,D2);
a = n/D;
x(k+1) = x(k) - a;
Err(k) = abs(x(k+1)-x(k));
if Err(k) <=err
fprintf('Initial value %f, result %f%+fi', x(1), real(x(k)), imag(x(k)))
break
end
end
results in
Initial value -2.000000, result -1.649100+0.000000i
If you want to get other roots, you have to use other initial values. For example one can obtain
Initial value 10.000000, result 5.862900+0.000000i
Initial value -2.000000, result -1.649100+0.000000i
Initial value 3.000000, result 0.491300+0.000000i
Initial value 0.000000, result 0.147400+0.434500i
Initial value 1.000000, result 0.147400-0.434500i
These are all zeros of the polynomial.
A method for calculating the next root when you have found another one would be that you divide through the corresponding linear factor and use your loop for the resulting new polynomial. Note that this is in general not very easy to handle since rounding errors can have a big influence on the result.
Problems with the existing code
You do not implement the Laguerre method properly as a method in complex numbers. The denominator candidates D1,D2 are in general complex numbers, it is inadvisable to use the simple max which only has sensible results for real inputs. The aim is to have a=n/D be the smaller of both variants, so that one has to look for the D in [D1,D2] with the larger absolute value. If there were a conditional assignment as in C, this would look like
D = (abs(D_1)>abs(D2)) ? D1 : D2;
As that does not exist, one has to use commands with a similar result
D = D1; if (abs(D_1)<abs(D2)) D=D2; end
The resulting sequence of approximation points is
x(0) = 0.0010000
x(1) = 0.143349512707684+0.466072958423667i
x(2) = 0.164462212064089+0.461399841949893i
x(3) = 0.164466373475316+0.461405404094130i
There is a point where one can not expect the (residual) polynomial value at the root approximation to substantially decrease. The value close to zero is obtained by adding and subtracting rather large terms in the sum expression of the polynomial. The accuracy lost in these catastrophic cancellation events can not be recovered.
The threshold for polynomial values that are effectively zero can be estimated as the machine constant of the double type times the polynomial value where all coefficients and the evaluation point are replaced by their absolute values. This test serves in the code primarily to avoid divisions by zero or near-zero.
Finding all roots
One approach is to apply the method to a sufficiently large number of initial points along some circle containing all the roots, with some strict rules for early termination at too slow convergence. One would have to make the list of the roots found unique, but keep the multiplicity,...
The other standard method is to apply deflation, that is, divide out the linear factor of the root found. This works well in low degrees.
There is no need for the slower symbolic operations as there are functions that work directly on the coefficient array, such as polyval and polyder. Deflation by division with remainder can be achieved using the deconv function.
For real polynomials, we know that the complex conjugate of a root is also a root. Thus initialize the next iteration with the deflated polynomial with it.
Other points:
There is no point in the double conversions as at no point there is a conversion into the single type.
If you don't do anything with it, it makes no sense to create an array, especially not for Err.
Roots of the example
Implementing all this I get a log of
x(0) = 0.001000000000000+0.000000000000000i, |Pn(x(0))| = 0.99701
x(1) = 0.143349512707684+0.466072958423667i, |dx|= 0.48733
x(2) = 0.164462212064089+0.461399841949893i, |dx|=0.021624
x(3) = 0.164466373475316+0.461405404094130i, |dx|=6.9466e-06
root found x=0.164466373475316+0.461405404094130i with value P0(x)=-2.22045e-16+9.4369e-16i
Deflation
x(0) = 0.164466373475316-0.461405404094130i, |Pn(x(0))| = 2.1211e-15
root found x=0.164466373475316-0.461405404094130i with value P0(x)=-2.22045e-16-9.4369e-16i
Deflation
x(0) = 0.164466373475316+0.461405404094130i, |Pn(x(0))| = 4.7452
x(1) = 0.586360702193454+0.016571894375927i, |dx|= 0.61308
x(2) = 0.562204173408499+0.000003168181059i, |dx|=0.029293
x(3) = 0.562204925474889+0.000000000000000i, |dx|=3.2562e-06
root found x=0.562204925474889+0.000000000000000i with value P0(x)=2.22045e-16-1.33554e-17i
Deflation
x(0) = 0.562204925474889-0.000000000000000i, |Pn(x(0))| = 7.7204
x(1) = 3.332994579372812-0.000000000000000i, |dx|= 2.7708
root found x=3.332994579372812-0.000000000000000i with value P0(x)=6.39488e-14-3.52284e-15i
Deflation
x(0) = 3.332994579372812+0.000000000000000i, |Pn(x(0))| = 5.5571
x(1) = -2.224132251798332+0.000000000000000i, |dx|= 5.5571
root found x=-2.224132251798332+0.000000000000000i with value P0(x)=-3.33067e-14+1.6178e-15i
for the modified code
P = [1, -2, -6, 6, -3, 1];
P0 = P;
deg=length(P)-1; % The eq. degree
err=1e-05; %Answer tolerance
N=10; %Max. # of Iterations
x=1e-3; % Initial Value
for n=deg:-1:1
dP = polyder(P); % first derivative of P
d2P = polyder(dP); %second derivative of P
fprintf("x(0) = %.15f%+.15fi, |Pn(x(0))| = %8.5g\n", real(x),imag(x), abs(polyval(P,x)));
for k=1:N
Px = polyval(P,x);
dPx = polyval(dP,x);
d2Px = polyval(d2P,x);
if abs(Px) < 1e-14*polyval(abs(P),abs(x))
break % if value is zero in relative accuracy
end
G = dPx/Px;
H=G^2 - d2Px / Px;
D1= (G+sqrt((n-1)*(n*H-G^2)));
D2= (G-sqrt((n-1)*(n*H-G^2)));
D = D1;
if abs(D2)>abs(D1) D=D2; end % select the larger denominator
a=n/D;
x=x-a;
fprintf("x(%d) = %.15f%+.15fi, |dx|=%8.5g\n",k,real(x),imag(x), abs(a));
if abs(a) < err*(err+abs(x))
break
end
end
y = polyval(P0,x); % check polynomial value of the original polynomial
fprintf("root found x=%.15f%+.15fi with value P0(x)=%.6g%+.6gi\n", real(x),imag(x),real(y),imag(y));
disp("Deflation");
[ P,R ] = deconv(P,[1,-x]); % division with remainder
x = conj(x); % shortcut for conjugate pairs and clustered roots
end

Solving nonlinear equations with "solve", incorrect solution

I am testing MATLAB capabilities in solving equations for a project that I intend to do, so I gave it a test run with something simple, but the results that it gives me are incorrect. I tried to solve two non-linear equations with two unknowns, one of the solutions is correct the other is not.
syms theta d x y
eq1 = d * cos(theta) == x;
eq2 = d * sin(theta) == y;
sol = solve(eq1, eq2, theta, d)
sol.theta
sol.d
The solutions for d are correct, but for theta I get:
-2*atan((x - (x^2 + y^2)^(1/2))/y)
-2*atan((x + (x^2 + y^2)^(1/2))/y)
And the correct answer for theta is simply atan(y/x)
Then when I evaluate these solutions with x = 1, y = 0, I get:
eval(sol.d)
eval(sol.theta)
d = 1, -1
theta = NaN, -3.1416
Solutions for d are correct, but theta in that scenario should be 0.
What am I doing wrong?
EDIT: solving it by hand it looks like this: Divide the y equation by the x equation
y/x = (d * sin(theta)) / (d * cos(theta))
y/x = sin(theta)/cos(theta)
y/x = tan(theta)
theta = atan(y/x)
Even if matlab solves it in some other way and gets a different expression, it should still yield the same final result when I use numbers and it PARTIALLY does.
For x = 1 and y = 0, theta should be 0, => this doesnt work, it gives NaN (explanation bellow)
for x = 1 and y = 1, theta should be 45 degrees => this works
for x = 0 and y = 1 theta should be 90 degrees => this works
And I just checked it again with the 45 and 90 degree values for x and y and it works, but for x = 1 and y = 0 it still gives NaN as one of the answers and that is because it gets a 0/0 from the way it is expressing it
-2*atan((x - (x^2 + y^2)^(1/2))/y)
-2*(1 - (1^2 + 0^2))^(1/2)/0
-2*(1 - 1)^(1/2)/0
0/0
but if its in the form of atan(y/x) the result is
theta = atan(0/1)
theta = atan(0)
theta = 0
Did you mean to solve this:
syms a b theta d real
eq1 = a==d * cos(theta) ;
eq2 = b==d * sin(theta) ;
[sol] = solve([eq1 eq2],[d theta] ,'IgnoreAnalyticConstraints', true,'Real',true,'ReturnConditions',true);
When solving the equations with symbolic x and y, the solver will find a solution with a certain condition, which can be obtained using the argument 'ReturnCondition':
syms x y theta d real
eq1 = d*cos(theta) == x;
eq2 = d*sin(theta) == y;
sol = solve([eq1; eq2],[d theta],'ReturnConditions',true);
This gives the following result for sol
>> sol.d
(x^2 + y^2)^(1/2)
-(x^2 + y^2)^(1/2)
>> sol.theta
2*pi*k - 2*atan((x - (x^2 + y^2)^(1/2))/y)
2*pi*k - 2*atan((x + (x^2 + y^2)^(1/2))/y)
>> sol.parameters
k
>> sol.conditions
y ~= 0 & in(k, 'integer')
y ~= 0 & in(k, 'integer')
As you can see, y = 0 does not fulfill this general solution given by the solver, resulting in your problem for y = 0. You can find solutions for y = 0 by either making y numeric instead of symbolic, or by adding an assumption:
syms x y theta d real
assume(y==0)
sol = solve([eq1; eq2],[d theta],'ReturnConditions',true);
I guess its easier to just set y=0 numeric, for this one condition, since there are already 4 possible solutions and conditions for the three lines above.

Series expansion of a function about infinity - how to return coefficients of series as a Matlab array?

This question is connected to this one. Suppose again the following code:
syms x
f = 1/(x^2+4*x+9)
Now taylor allows the function f to be expanded about infinity:
ts = taylor(f,x,inf,'Order',100)
But the following code
c = coeffs(ts)
produces errors, because the series does not contain positive powers of x (it contains negative powers of x).
In such a case, what code should be used?
Since the Taylor Expansion around infinity was likely performed with the substitution y = 1/x and expanded around 0, I would explicitly make that substitution to make the power positive for use on coeffs:
syms x y
f = 1/(x^2+4x+9);
ts = taylor(f,x,inf,'Order',100);
[c,ty] = coeffs(subs(ts,x,1/y),y);
tx = subs(ty,y,1/x);
The output from taylor is not a multivariate polynomial, so coeffs won't work in this case. One thing you can try is using collect (you may get the same or similar result from using simplify):
syms x
f = 1/(x^2 + 4*x + 9);
ts = series(f,x,Inf,'Order',5) % 4-th order Puiseux series of f about 0
c = collect(ts)
which returns
ts =
1/x^2 - 4/x^3 + 7/x^4 + 8/x^5 - 95/x^6
c =
(x^4 - 4*x^3 + 7*x^2 + 8*x - 95)/x^6
Then you can use numden to extract the numerator and denominator from either c or ts:
[n,d] = numden(ts)
which returns the following polynomials:
n =
x^4 - 4*x^3 + 7*x^2 + 8*x - 95
d =
x^6
coeffs can then be used on the numerator. You may find other functions listed here helpful as well.

constant term in Matlab principal component regression (pcr) analysis

I am trying to learn principal component regression (pcr) with Matlab. I use this guide here: http://www.mathworks.fr/help/stats/examples/partial-least-squares-regression-and-principal-components-regression.html
it's really good, but I just cannot understand one step:
we do the PCA and the regression, nice and clear:
[PCALoadings,PCAScores,PCAVar] = princomp(X);
betaPCR = regress(y-mean(y), PCAScores(:,1:2));
And then we adjust the first coefficient:
betaPCR = PCALoadings(:,1:2)*betaPCR;
betaPCR = [mean(y) - mean(X)*betaPCR; betaPCR];
yfitPCR = [ones(n,1) X]*betaPCR;
How come that the coefficient needs to be 'mean(y) - mean(X)*betaPCR' for the constant one factor? Can you explain that to me?
Thanks in advance!
This is really a math question, not a coding question. Your PCA extracts a set of features and puts them in a matrix, which gives you PCALoadings and PCAScores. Pull out the first two principal components and their loadings, and put them in their own matrix:
W = PCALoadings(:, 1:2)
Z = PCAScores(:, 1:2)
The relationship between X and Z is that X can be approximated by:
Z = (X - mean(X)) * W <=> X ~ mean(X) + Z * W' (1)
The intuition is that Z captures most of the "important information" in X, and the matrix W tells you how to transform between the two representations.
Now you can do a regression of y on Z. First you have to subtract the mean from y, so that both the left and right hand sides have mean zero:
y - mean(y) = Z * beta + errors (2)
Now you want to use that regression to make predictions for y from X. Substituting from equation (1) into equation (2) gives you
y - mean(y) = (X - mean(X)) * W * beta
= (X - mean(X)) * beta1
where we have defined beta1 = W * beta (you do this in your third line of code). Rearranging:
y = mean(y) - mean(X) * beta1 + X * beta1
= [ones(n,1) X] * [mean(y) - mean(X) * beta1; beta1]
= [ones(n,1) X] * betaPCR
which works out if we define
betaPCR = [mean(y) - mean(X) * beta1; beta1]
as in your fourth line of code.