For example, FX = x ^ 2 + sin (x)
Just for curiosity, I don't want to use the CVX toolbox to do this.
You can check this within some interval [a,b] by checking if the second derivative is nonnegative. For this you have to define a vector of x-values, find the numerical second derivative and check whether it is not too negative:
a = 0;
b = 1;
margin = 1e-5;
point_count = 100;
f=#(x) x.^2 + sin(x);
x = linspace(a, b, point_count)
is_convex = all(diff(x, 2) > -margin);
Since this is a numerical test, you need to adjust the parameter to the properties of the function, that is if the function does wild things on a small scale we might not be able to pick it up. E.g. with the parameters above the test will falsely report the function f=#(x)sin(99.5*2*pi*x-3) as convex.
clear
syms x real
syms f(x) d(x) d1(x)
f = x^2 + sin(x)
d = diff(f,x,2)==0
d1 = diff(f,x,2)
expSolution = solve(d, x)
if size(expSolution,1) == 0
if eval(subs(d1,x,0))>0
disp("condition 1- the graph is concave upward");
else
disp("condition 2 - the graph is concave download");
end
else
disp("condition 3 -- not certain")
end
Related
I am trying to use the fixed point iteration method with initial approximation x(1)=0 to obtain an approximation to the root of the equation f(x)=3x+sin(x)e^x=0.
The stopping criterion is
|x(k+1)-x(k)|<0.0001
x(1) = 0;
n = 100;
for k = 1:n
f(k) = 3*x(k) +sin(x(k))-exp(x(k));
if (abs(f(k))<0.0001)
break;
end
syms x
diff(f(k));
x(k+1) = x(1)- (f(k))/(diff(f(k)));
end
[x' f']
This is the error I am getting: Error using / Matrix dimensions must
agree. Error in prac2Q2 (line 15)
x(k+1) = x(1)- (f(k))/(diff(f(k)));
I would suggest to calculate the derivative by hand and use that term as denominator or to save the derivative in another variable and use this as the denominator.
Derivative as Variable
f(k) = ...;
df(k) = diff(f(k));
x(k+1) = x(k) - f(k) / df(k);
PS: I cannot test this, because I do not have access to the Symbolic Toolbox right now.
If you're looking for the root of 3*x +sin(x)-exp(x) you want to resolve this equation:
3*x + sin(x) - exp(x) = 0
The easiest way will be to isolate x in one side of the equation:
x = (exp(x) - sin(x))/3 % now iterate until x = (exp(x) - sin(x))/3
Now I would recommand to use an easier fixed point method: x(k+1) = (x(k)+f(x(k)))/2
x = 1 % x0
while 1
y = (exp(x)-sin(x))/3; % we are looking for the root not for a fixed point !!! y = f(x)
x = (x+y)/2 % after a few iterations x == y, so x = (x+y)/2 or x = 2x/2
if abs(x-y) < 1e-10
break
end
end
And you obtain the correct result:
x = 0.36042
No need of symbolic math.
I want to write a program that makes use of Newtons Method:
To estimate the x of this integral:
Where X is the total distance.
I have functions to calculate the Time it takes to arrive at a certain distance by using the trapezoid method for numerical integration. Without using trapz.
function T = time_to_destination(x, route, n)
h=(x-0)/n;
dx = 0:h:x;
y = (1./(velocity(dx,route)));
Xk = dx(2:end)-dx(1:end-1);
Yk = y(2:end)+y(1:end-1);
T = 0.5*sum(Xk.*Yk);
end
and it fetches its values for velocity, through ppval of a cubic spline interpolation between a set of data points. Where extrapolated values should not be fetcheable.
function [v] = velocity(x, route)
load(route);
if all(x >= distance_km(1))==1 & all(x <= distance_km(end))==1
estimation = spline(distance_km, speed_kmph);
v = ppval(estimation, x);
else
error('Bad input, please choose a new value')
end
end
Plot of the velocity spline if that's interesting to you evaluated at:
dx= 1:0.1:65
Now I want to write a function that can solve for distance travelled after a certain given time, using newton's method without fzero / fsolve . But I have no idea how to solve for the upper bound of a integral.
According to the fundamental theorem of calculus I suppose the derivative of the integral is the function inside the integral, which is what I've tried to recreate as Time_to_destination / (1/velocity)
I added the constant I want to solve for to time to destination so its
(Time_to_destination - (input time)) / (1/velocity)
Not sure if I'm doing that right.
EDIT: Rewrote my code, works better now but my stopcondition for Newton Raphson doesnt seem to converge to zero. I also tried to implement the error from the trapezoid integration ( ET ) but not sure if I should bother implementing that yet. Also find the route file in the bottom.
Stop condition and error calculation of Newton's Method:
Error estimation of trapezoid:
Function x = distance(T, route)
n=180
route='test.mat'
dGuess1 = 50;
dDistance = T;
i = 1;
condition = inf;
while condition >= 1e-4 && 300 >= i
i = i + 1 ;
dGuess2 = dGuess1 - (((time_to_destination(dGuess1, route,n))-dDistance)/(1/(velocity(dGuess1, route))))
if i >= 2
ET =(time_to_destination(dGuess1, route, n/2) - time_to_destination(dGuess1, route, n))/3;
condition = abs(dGuess2 - dGuess1)+ abs(ET);
end
dGuess1 = dGuess2;
end
x = dGuess2
Route file: https://drive.google.com/open?id=18GBhlkh5ZND1Ejh0Muyt1aMyK4E2XL3C
Observe that the Newton-Raphson method determines the roots of the function. I.e. you need to have a function f(x) such that f(x)=0 at the desired solution.
In this case you can define f as
f(x) = Time(x) - t
where t is the desired time. Then by the second fundamental theorem of calculus
f'(x) = 1/Velocity(x)
With these functions defined the implementation becomes quite straightforward!
First, we define a simple Newton-Raphson function which takes anonymous functions as arguments (f and f') as well as an initial guess x0.
function x = newton_method(f, df, x0)
MAX_ITER = 100;
EPSILON = 1e-5;
x = x0;
fx = f(x);
iter = 0;
while abs(fx) > EPSILON && iter <= MAX_ITER
x = x - fx / df(x);
fx = f(x);
iter = iter + 1;
end
end
Then we can invoke our function as follows
t_given = 0.3; % e.g. we want to determine distance after 0.3 hours.
n = 180;
route = 'test.mat';
f = #(x) time_to_destination(x, route, n) - t_given;
df = #(x) 1/velocity(x, route);
distance_guess = 50;
distance = newton_method(f, df, distance_guess);
Result
>> distance
distance = 25.5877
Also, I rewrote your time_to_destination and velocity functions as follows. This version of time_to_destination uses all the available data to make a more accurate estimate of the integral. Using these functions the method seems to converge faster.
function t = time_to_destination(x, d, v)
% x is scalar value of destination distance
% d and v are arrays containing measured distance and velocity
% Assumes d is strictly increasing and d(1) <= x <= d(end)
idx = d < x;
if ~any(idx)
t = 0;
return;
end
v1 = interp1(d, v, x);
t = trapz([d(idx); x], 1./[v(idx); v1]);
end
function v = velocity(x, d, v)
v = interp1(d, v, x);
end
Using these new functions requires that the definitions of the anonymous functions are changed slightly.
t_given = 0.3; % e.g. we want to determine distance after 0.3 hours.
load('test.mat');
f = #(x) time_to_destination(x, distance_km, speed_kmph) - t_given;
df = #(x) 1/velocity(x, distance_km, speed_kmph);
distance_guess = 50;
distance = newton_method(f, df, distance_guess);
Because the integral is estimated more accurately the solution is slightly different
>> distance
distance = 25.7771
Edit
The updated stopping condition can be implemented as a slight modification to the newton_method function. We shouldn't expect the trapezoid rule error to go to zero so I omit that.
function x = newton_method(f, df, x0)
MAX_ITER = 100;
TOL = 1e-5;
x = x0;
iter = 0;
dx = inf;
while dx > TOL && iter <= MAX_ITER
x_prev = x;
x = x - f(x) / df(x);
dx = abs(x - x_prev);
iter = iter + 1;
end
end
To check our answer we can plot the time vs. distance and make sure our estimate falls on the curve.
...
distance = newton_method(f, df, distance_guess);
load('test.mat');
t = zeros(size(distance_km));
for idx = 1:numel(distance_km)
t(idx) = time_to_destination(distance_km(idx), distance_km, speed_kmph);
end
plot(t, distance_km); hold on;
plot([t(1) t(end)], [distance distance], 'r');
plot([t_given t_given], [distance_km(1) distance_km(end)], 'r');
xlabel('time');
ylabel('distance');
axis tight;
One of the main issues with my code was that n was too low, the error of the trapezoidal sum, estimation of my integral, was too high for the newton raphson method to converge to a very small number.
Here was my final code for this problem:
function x = distance(T, route)
load(route)
n=10e6;
x = mean(distance_km);
i = 1;
maxiter=100;
tol= 5e-4;
condition=inf
fx = #(x) time_to_destination(x, route,n);
dfx = #(x) 1./velocity(x, route);
while condition > tol && i <= maxiter
i = i + 1 ;
Guess2 = x - ((fx(x) - T)/(dfx(x)))
condition = abs(Guess2 - x)
x = Guess2;
end
end
I want to solve:
I use following MATLAB code, but it does not work.
Can someone please guide me?
function f=objfun
f=-f;
function [c1,c2,c3]=constraint(x)
a1=1.1; a2=1.1; a3=1.1;
c1=f-log(a1)-log(x(1)/(x(1)+1));
c2=f-log(a2)-log(x(2)/(x(2)+1))-log(1-x(1));
c3=f-log(a3)-log(1-x(1))-log(1-x(2));
x0=[0.01;0.01];
[x,fval]=fmincon('objfun',x0,[],[],[],[],[0;0],[1;1],'constraint')
You need to flip the problem around a bit. You are trying to find the point x (which is (l_1,l_2)) that makes the minimum of the 3 LHS functions the largest. So, you can rewrite your problem as, in pseudocode,
maximise, by varying x in [0,1] X [0,1]
min([log(a1)+log(x(1)/(x(1)+1)) ...
log(a2)+log(x(2)/(x(2)+1))+log(1-x(1)) ...
log(a3)+log(1-x(1))+log(1-x(2))])
Since Matlab has fmincon, rewrite this as a minimisation problem,
minimise, by varying x in [0,1] X [0,1]
max(-[log(a1)+log(x(1)/(x(1)+1)) ...
log(a2)+log(x(2)/(x(2)+1))+log(1-x(1)) ...
log(a3)+log(1-x(1))+log(1-x(2))])
So the actual code is
F=#(x) max(-[log(a1)+log(x(1)/(x(1)+1)) ...
log(a2)+log(x(2)/(x(2)+1))+log(1-x(1)) ...
log(a3)+log(1-x(1))+log(1-x(2))])
[L,fval]=fmincon(F,[0.5 0.5])
which returns
L =
0.3383 0.6180
fval =
1.2800
Can also solve this in the convex optimization package CVX with the following MATLAB code:
cvx_begin
variables T(1);
variables x1(1);
variables x2(1);
maximize(T)
subject to:
log(a1) + x1 - log_sum_exp([0, x1]) >= T;
log(a2) + x2 - log_sum_exp([0, x2]) + log(1 - exp(x1)) >= T;
log(a3) + log(1 - exp(x1)) + log(1 - exp(x2)) >= T;
x1 <= 0;
x2 <= 0;
cvx_end
l1 = exp(x1); l2 = exp(x2);
To use CVX, each constraint and the objective function has to be written in a way that is proveably convex using CVX's ruleset. Making the substitution x1 = log(l1) and x2 = log(l2) allows one to do that. Note that: log_sum_exp([0,x1]) = log(exp(0) + exp(x1)) = log(1 + l1)
This also returns the answers: l1 = .3383, l2 = .6180, T = -1.2800
Suppose I have two equations with only one variable (free parameter) x and that k1 and k2 are constants. I would like to solve for:
f(x) + k1 = 0
&
g(x) + k2 = 0
...
h(x) + kn = 0
Of course there is no value of x that satisfies all of these equations. I basically would like the value of x that minimizes the output of each of these equations.
'solve' in matlab looks for an exact answer and returns an error, here's an example to demonstrate:
syms x
solution = solve(0.5*(x-k1)/sqrt(2) == 0, 0.5*(x-k2)/sqrt(2) == 0);
You can try using Unconstrained Optimization method such as fminsearch, for example:
h=#(x) x^2;
g=#(x) x^3;
k1=2;
k2=4;
inital_guess=3;
f = #(x) sum(abs([h(x)+k1; g(x)+k2]));
[x,fval] = fminsearch(f,inital_guess)
Note that I represent both eq in matrix form, and the minimization is by looking at the sum of their absolute values.
For the values I entered the value of x that minmize these eq is given by the output x = -1.5874
I'm trying to create a matrix such that if I define a random number between 0 and 1 and a random location in the matrix, I want all the values around that to "diffuse" out. Here's sort of an example:
0.214 0.432 0.531 0.631 0.593 0.642
0.389 0.467 0.587 0.723 0.654 0.689
0.421 0.523 0.743 0.812 0.765 0.754
0.543 0.612 0.732 0.843 0.889 0.743
0.322 0.543 0.661 0.732 0.643 0.694
0.221 0.321 0.492 0.643 0.521 0.598
if you notice, there's a peak at (4,5) = 0.889 and all the other numbers decrease as they move away from that peak.
I can't figure out a nice way to generate a code that does this. Any thoughts? I need to be able to generate this type of matrix with random peaks and a random rate of decrease...
Without knowing what other constraints you want to implement:
Come up with a function z = f(x,y) whose peak value is at (x0,y0) == (0,0) and whose values range between [0,1]. As an example, the PDF for the Normal distribution with mu = 0 and sigma = 1/sqrt(2*pi) has a peak at x == 0 of 1.0, and whose lower bound is zero. Similarly, a bivariate normal PDF with mu = {0,0} and determinate(sigma) == [1/(2*pi)]^2 will have similar characteristics.
Any mathematical function may have its domain shifted: f(x-x0, y-y0)
Your code will look something like this:
someFunction = #(x,y) theFunctionYouPicked(x,y);
[x0,y0,peak] = %{ you supply these values %};
myFunction = #(x,y) peak * someFunction(x - x0, y - y0);
[dimX,dimY] = %{ you supply these values %};
mymatrix = bsxfun( myFunction, 0:dimX, (0:dimY)' );
You can read more about bsxfun here; however, here's an example of how it works:
bsxfun( blah, [a b c], [d e f]' )
That should give the following matrix (or its transpose ... I don't have matlab in front of me):
[blah(a,d) blah(a,e) blah(a,f);
blah(b,d) blah(b,e) blah(b,f);
blah(c,d) blah(c,e) blah(c,f)]
Get a toy example working, then you can tinker with it to be more flexible. If the function dictating how it decreases is random (with the constraint that points closer to (x0,y0) are larger than more distant points), it won't be an issue to make a procedural function instead of using strictly mathematical ones.
In response to your answer:
Your equation could be thought of as a model for gravity where an object instantaneously induces a force on another mass, then stops exerting force. Following that logic, it could be modified to a naive vector formulation like this:
% v1 & v2 are vectors that point from the two peak points to the point [ii,jj]
theMatrix(ii,jj) = norm( (r1 / norm( v1 )) * v1 / norm( v1 ) ...
+ (r2 / norm( v2 )) * v2 / norm( v2 ) ...
);
The most extreme type of corner case you'll run into is one where v1 & v2 point in the same direction as in the following row:
[ . . A X1 X2 . . ]
... where you want a value for A w/respect to X1 & X2. Using the above expression it'll boil down to A = X1 / norm(v1) + X2 / norm(v2), which will definitely exceed the peak value at X1 because norm(v1) == 1. You could certainly do some dirty stuff to Band-Aid it, but personally I'd start looking for a different function.
Along those lines, if you used Newton's Law of Universal Gravitation with a few modifications:
You wouldn't need an analogue for G, so you could just assume G == 1
Treat each of the points in the matrix as having mass m2 == 1, so the equation reduces to: F_12 == -1 * (m1 / r^2) * RHAT_12
Sum the "force" vectors and calculate the norm to get each value
... you'll still run into the same problem. The corner case I laid out above would boil down to A = X1/norm(v1)^2 + X2/norm(v2)^2 == X1 + X2/4. Since it's inversely proportional to the square of the distances, it'd be easier to Band-Aid than the linear one, but I wouldn't recommend it.
Similarly, if you use polynomials it won't scale well; you can design one that won't ever exceed your chosen peaks, but there wouldn't be a lower bound.
You could use the logistic function to help with this:
1 / (1 + E^(-c*x))
Here's an example of using the logistic function on a degree 4 polynomial with peaks at points 2 & 4; you'll note I gave the polynomial a scaling factor to pull the polynomial down to relatively small values so calculated values aren't so close together.
I ended up creating a code that wraps the way I want based on a dimension, which I provide. Here's the code:
dims = 100;
A = zeros(dims);
b = floor(1+dims*rand(1));
c = floor(1+dims*rand(1));
d = rand(1);
x1 = c;
y1 = b;
A(x1,y1) = d;
for i = 1:dims
for j = i
k = 1-j;
while k <= j
if x1-j>0 && y1+k>0 && y1+k <= dims
if A(x1-j,y1+k) == 0
A(x1-j,y1+k) = eqn(d,x1-j,y1+k,x1,y1);
end
end
k = k+1;
end
end
for k = i
j = 1-k;
while j<=k
if x1+j>0 && y1+k>0 && y1+k <= dims && x1+j <= dims
if A(x1+j,y1+k)==0
A(x1+j, y1+k) = eqn(d,x1+j,y1+k,x1,y1);
end
end
j = j+1;
end
end
for j = i
k = 1-j;
while k<=j
if x1+j>0 && y1-k>0 && x1+j <= dims && y1-k<= dims
if A(x1+j,y1-k) == 0
A(x1+j,y1-k) = eqn(d,x1+j,y1-k,x1,y1);
end
end
k=k+1;
end
end
for k = i
j = 1-k;
while j<=k
if x1-j>0 && y1-k>0 && x1-j <= dims && y1-k<= dims
if A(x1-j,y1-k)==0
A(x1-j,y1-k) = eqn(d,x1-j,y1-k,x1,y1);
end
end
j = j+1;
end
end
end
colormap('hot');
imagesc(A);
colorbar;
If you notice, the code calls a function (I called it eqn), which provided the information for how to changes the values in each cell. The function that I settled on is d/distance (distance being computed using the standard distance formula).
It seems to work pretty well. I'm now just trying to develop a good way to have multiple peaks in the same square without one peak completely overwriting the other.