Matrix Multiplication Simplification not giving same results in code - matlab

I want to evaluate the expression xTAx -2yTAx+yTAy in Matlab.
If my calculations are correct, this should be equivalent to solving(x-y)TA(x-y)
My main problem right now is that I am not getting the same results from the above two expressions. I'm wondering if it's a precision error or a conceptual error.
I tried a very simple example with some random values to check my math was right. The mini example I used is as follows
A = [1,2,0;2,1,2;0,2,1];
x = [1;2;3];
y = [4;4;4];
(transpose(x)*A*x)-(2*transpose(y)*A*x)+(transpose(y)*A*(y))
transpose(x-y)*A*(x-y)
Both give 46.
I then tried a more realistic example of values for what I'm doing and it failed. For example
A = [2.66666666666667,-0.333333333333333,0,-0.333333333333333,-0.333333333333333,0,0,0,0;
-0.333333333333333,2.66666666666667,-0.333333333333333,-0.333333333333333,-0.333333333333333,-0.333333333333333,0,0,0;
0,-0.333333333333333,2.66666666666667,0,-0.333333333333333,-0.333333333333333,0,0,0;
-0.333333333333333,-0.333333333333333,0,2.66666666666667,-0.333333333333333,0,-0.333333333333333,-0.333333333333333,0;
-0.333333333333333,-0.333333333333333,-0.333333333333333,-0.333333333333333,2.66666666666667,-0.333333333333333,-0.333333333333333,-0.333333333333333 -0.333333333333333;
0,-0.333333333333333,-0.333333333333333,0,-0.333333333333333,2.66666666666667,0,-0.333333333333333,-0.333333333333333;
0,0,0,-0.333333333333333,-0.333333333333333,0,2.66666666666667,-0.333333333333333,0;
0,0,0,-0.333333333333333,-0.333333333333333,-0.333333333333333,-0.333333333333333,2.66666666666667,-0.333333333333333;
0,0,0,0,-0.333333333333333,-0.333333333333333,0,-0.333333333333333,2.66666666666667];
x =[1.21585420370805;
1.00388159497757e-16;
-0.405284734569351;
1.36809776609658e-16;
-1.04796659533634e-17;
-7.52459042423650e-17;
-0.607927101854027;
-8.49163704356314e-17;
0.303963550927013];
v =[0.0319067068305797,0.00786616506360615,0.0709811622828447,0.0719615328671117;
1.26150800194897e-17,5.77584497721720e-18,7.89740111567879e-18,7.14396333930938e-18;
-0.158358815125228,-0.876275686098803,0.0539216716399594,0.0450616819309899;
7.90937837037453e-18,3.24196519177793e-18,3.99402664932776e-18,4.17486202509670e-18;
5.35533279761622e-18,-8.91723780863019e-19,-1.56128480212603e-18,1.84423677629470e-19;
-2.18478057810330e-17,-6.63779320738873e-18,-3.21099714760257e-18,-3.93612240449303e-18;
-0.0213963226092681,-0.0168256143048771,-0.0175695110350900,-0.0128155908603601;
-4.06029341772399e-18,-5.65705978843172e-18,-1.80182480882056e-18,-1.59281757789645e-18;
0.221482525259710,-0.0576644539359728,0.0163934384910353,0.0197432976432437];
u = [1.37058079022968;
1.79302486419321;
69.4330887239959;
-52.3949662214410];
y = v*u;
Gives 0 for the first expression and 7.1387e-28 for the second. Is this a precision error thing? Which version is better/ more accurate to use and why? Thank you!

I have not checked your simplification, but floating-point math in general is inexact. Even doing the same operations in a different order can give you different results. With the deviations you are seeing I would believe they could reasonably come from inexactness in floating-point math and it is up to you to decide whether the deviations are acceptable for your purpose.
To determine which version is more accurate you would have to compute reference values to compare to, which might prove difficult.

Related

How to force MATLAB to not compute as Inf

I am trying to work through some code that I wrote and one specific line is giving me problems in MATLAB:
Ts = (1+(DatesMod.*Bs)./VolMod).^(VolMod);
VolMod is an array with values on the order of 10^8, DatesMod has a range of values between 700,000 and 740,000, and Bs has a range of values between 0 and 100. Note that this function is mathematically similar to doing lim(n->Inf) (1+B*Dates/n)^n. I understand that this primarily has to do with the methods of allocating numbers on the computer. Is there a clever way I can force it to compute the actual value instead of returning Inf for every value?
Thanks in advance.
Note that the limit
lim(n->Inf) (1+B*Dates/n)^n = exp(B*Dates)
and that exp will overflow to Inf once the argument is greater than 709.9, so there is no real way to compute Ts exactly without arbitrary precision arithmetic.
The best option is probably work in log-precision, e.g. instead of Ts you work with logTs
logTs = VolMod .* log1p((DatesMod.*Bs)./VolMod)
You would then need to rewrite any subsequent expressions to use this without explicitly computing exp(logTs) (as that will overflow).

Matlab, economy QR decomposition, control precision?

There is a [Q,R] = qr(A,0) function in Matlab, which, according to documentation, returns an "economy" version of qr-decomposition of A. norm(A-Q*R) returns ~1e-12 for my data set. Also Q'*Q should theoretically return I. In practice there are small nonzero elements above and below the diagonal (of the order of 1e-6 or so), as well as diagonal elements that are slightly greater than 1 (again, by 1e-6 or so). Is anyone aware of a way to control precision of qr(.,0), or quality(orthogonality) of resulting Q, either by specifying epsilon, or via the number of iterations ? The size of the data set makes qr(A) run out of memory so I have to use qr(A,0).
When I try the non- economy setting, I actually get comparable results for A-Q*R. Even for a tiny matrix containing small numbers as shown here:
A = magic(20);
[Q, R] = qr(A); %Result does not change when using qr(A,0)
norm(A-Q*R)
As such I don't believe the 'economy' is the problem as confirmed by #horchler in the comments, but that you have just ran into the limits of how accurate calculations can be done with data of type 'double'.
Even if you change the accuracy somehow, you will always be dealing with an approximation, so perhaps the first thing to consider here is whether you really need greater accuracy than you already have. If you need more accuracy there may always be a way, but I doubt whether it will be a straightforward one.

Logical indexing and double precision numbers

I am trying to solve a non-linear system of equations using the Newton-Raphson iterative method, and in order to explore the parameter space of my variables, it is useful to store the previous solutions and use them as my first initial guess so that I stay in the basin of attraction.
I currently save my solutions in a structure array that I store in a .mat file, in about this way:
load('solutions.mat','sol');
str = struct('a',Param1,'b',Param2,'solution',SolutionVector);
sol=[sol;str];
save('solutions.mat','sol');
Now, I do another run, in which I need the above solution for different parameters NewParam1 and NewParam2. If Param1 = NewParam1-deltaParam1, and Param2 = NewParam2 - deltaParam2, then
load('solutions.mat','sol');
index = [sol.a]== NewParam1 - deltaParam1 & [sol.b]== NewParam2 - deltaParam2;
% logical index to find solution from first block
SolutionVector = sol(index).solution;
I sometimes get an error message saying that no such solution exists. The problem lies in the double precisions of my parameters, since 2-1 ~= 1 can happen in Matlab, but I can't seem to find an alternative way to achieve the same result. I have tried changing the numerical parameters to strings in the saving process, but then I ran into problems with logical indexing with strings.
Ideally, I would like to avoid multiplying my parameters by a power of 10 to make them integers as this will make the code quite messy to understand due to the number of parameters. Other than that, any help will be greatly appreciated. Thanks!
You should never use == when comparing double precision numbers in MATLAB. The reason is, as you state in the the question, that some numbers can't be represented precisely using binary numbers the same way 1/3 can't be written precisely using decimal numbers.
What you should do is something like this:
index = abs([sol.a] - (NewParam1 - deltaParam1)) < 1e-10 & ...
abs([sol.b] - (NewParam2 - deltaParam2)) < 1e-10;
I actually recommend not using eps, as it's so small that it might actually fail in some situations. You can however use a smaller number than 1e-10 if you need a very high level of accuracy (but how often do we work with numbers less than 1e-10)?

Matlab not accepting whole number as index

I am using a while loop with an index t starting from 1 and increasing with each loop.
I'm having problems with this index in the following bit of code within the loop:
dt = 100000^(-1);
t = 1;
equi = false;
while equi==false
***some code that populates the arrays S(t) and I(t)***
t=t+1;
if (t>2/dt)
n = [S(t) I(t)];
np = [S(t-1/dt) I(t-1/dt)];
if sum((n-np).^2)<1e-5
equi=true;
end
end
First, the code in the "if" statement is accessed at t==200000 instead of at t==200001.
Second, the expression S(t-1/dt) results in the error message "Subscript indices must either be real positive integers or logicals", even though (t-1/dt) is whole and equals 1.0000e+005 .
I guess I can solve this using "round", but this worked before and suddenly doesn't work and I'd like to figure out why.
Thanks!
the expression S(t-1/dt) results in the error message "Subscript indices must either be real positive integers or logicals", even though (t-1/dt) is whole and equals 1.0000e+005
Is it really? ;)
mod(200000 - 1/dt, 1)
%ans = 1.455191522836685e-11
Your index is not an integer. This is one of the things to be aware of when working with floating point arithmetic. I suggest reading this excellent resource: "What every computer scientist should know about floating-point Arithmetic".
You can either use round as you did, or store 1/dt as a separate variable (many options exist).
Matlab is lying to you. You're running into floating point inaccuracies and Matlab does not have an honest printing policy. Try printing the numbers with full precision:
dt = 100000^(-1);
t = 200000;
fprintf('2/dt == %.12f\n',2/dt) % 199999.999999999971
fprintf('t - 1/dt == %.12f\n',t - 1/dt) % 100000.000000000015
While powers of 10 are very nice for us to type and read, 1e-5 (your dt) cannot be represented exactly as a floating point number. That's why your resulting calculations aren't coming out as even integers.
The statement
S(t-1/dt)
can be replaced by
S(uint32(t-1/dt))
And similarly for I.
Also you might want to save 1/dt hardcoded as 100000 as suggested above.
I reckon this will improve the comparison.

Matlab: poor accuracy of optimizers/solvers

I am having difficulty achieving sufficient accuracy in a root-finding problem on Matlab. I have a function, Lik(k), and want to find the value of k where Lik(k)=L0. Basically, the problem is that various built-in Matlab solvers (fzero, fminbnd, fmincon) are not getting as close to the solution as I would like or expect.
Lik() is a user-defined function which involves extensive coding to compute a numerical inverse Laplace transform, etc., and I therefore do not include the full code. However, I have used this function extensively and it appears to work properly. Lik() actually takes several input parameters, but for the current step, all of these are fixed except k. So it is really a one-dimensional root-finding problem.
I want to find the value of k >= 165.95 for which Lik(k)-L0 = 0. Lik(165.95) is less than L0 and I expect Lik(k) to increase monotonically from here. In fact, I can evaluate Lik(k)-L0 in the range of interest and it appears to smoothly cross zero: e.g. Lik(165.95)-L0 = -0.7465, ..., Lik(170.5)-L0 = -0.1594, Lik(171)-L0 = -0.0344, Lik(171.5)-L0 = 0.1015, ... Lik(173)-L0 = 0.5730, ..., Lik(200)-L0 = 19.80. So it appears that the function is behaving nicely.
However, I have tried to "automatically" find the root with several different methods and the accuracy is not as good as I would expect...
Using fzero(#(k) Lik(k)-L0): If constrained to the interval (165.95,173), fzero returns k=170.96 with Lik(k)-L0=-0.045. Okay, although not great. And for practical purposes, I would not know such a precise upper bound without a lot of manual trial and error. If I use the interval (165.95,200), fzero returns k=167.19 where Lik(k)-L0 = -0.65, which is rather poor. I have been running these tests with Display set to iter so I can see what's going on, and it appears that fzero hits 167.19 on the 4th iteration and then stays there on the 5th iteration, meaning that the change in k from one iteration to the next is less than TolX (set to 0.001) and thus the procedure ends. The exit flag indicates that it successfully converged to a solution.
I also tried minimizing abs(Lik(k)-L0) using fminbnd (giving upper and lower bounds on k) and fmincon (giving a starting point for k) and ran into similar accuracy issues. In particular, with fmincon one can set both TolX and TolFun, but playing around with these (down to 10^-6, much higher precision than I need) did not make any difference. Confusingly, sometimes the optimizer even finds a k-value on an earlier iteration that is closer to making the objective function zero than the final k-value it returns.
So, it appears that the algorithm is iterating to a certain point, then failing to take any further step of sufficient size to find a better solution. Does anyone know why the algorithm does not take another, larger step? Is there anything I can adjust to change this? (I have looked at the list under optimset but did not come up with anything useful.)
Thanks a lot!
As you seem to have a 'wild' function that does appear to be monotone in the region, a fairly small range of interest, and not a very high requirement in precision I think all criteria are met for recommending the brute force approach.
Assuming it does not take too much time to evaluate the function in a point, please try this:
Find an upperbound xmax and a lower bound xmin, choose a preferred stepsize and evaluate your function at
xmin:stepsize:xmax
If required (and monotonicity really applies) you can get another upper and lower bound by doing this and repeat the process for better accuracy.
I also encountered this problem while using fmincon. Here is how I fixed it.
I needed to find the solution of a function (single variable) within an optimization loop (multiple variables). Because of this, I needed to provide a large interval for the solution of the single variable function. The problem is that fmincon (or fzero) does not converge to a solution if the search interval is too large. To get past this, I solve the problem inside a while loop, with a huge starting upperbound (1e200) with the constraint made on the fval value resulting from the solver. If the resulting fval is not small enough, I decrease the upperbound by a factor. The code looks something like this:
fval = 1;
factor = 1;
while fval>1e-7
UB = factor*1e200;
[x,fval,exitflag] = fminbnd(#(x)function(x,...),LB,UB,options);
factor = factor * 0.001;
end
The solver exits the while when a good solution is found. You can of course play also with the LB by introducing another factor and/or increase the factor step.
My 1st language isn't English so I apologize for any mistakes made.
Cheers,
Cristian
Why not use a simple bisection method? You always evaluate the middle of a certain interval and then reduce this to the right or left part so that you always have one bound giving a negative and the other bound giving a positive value. You can reduce to arbitrary precision very quickly. Since you reduce the interval in half each time it should converge very quickly.
I would suspect however there is some other problem with that function in that it has discontinuities. It seems strange that fzero would work so badly. It's a deterministic function right?