Matlab: poor accuracy of optimizers/solvers - matlab

I am having difficulty achieving sufficient accuracy in a root-finding problem on Matlab. I have a function, Lik(k), and want to find the value of k where Lik(k)=L0. Basically, the problem is that various built-in Matlab solvers (fzero, fminbnd, fmincon) are not getting as close to the solution as I would like or expect.
Lik() is a user-defined function which involves extensive coding to compute a numerical inverse Laplace transform, etc., and I therefore do not include the full code. However, I have used this function extensively and it appears to work properly. Lik() actually takes several input parameters, but for the current step, all of these are fixed except k. So it is really a one-dimensional root-finding problem.
I want to find the value of k >= 165.95 for which Lik(k)-L0 = 0. Lik(165.95) is less than L0 and I expect Lik(k) to increase monotonically from here. In fact, I can evaluate Lik(k)-L0 in the range of interest and it appears to smoothly cross zero: e.g. Lik(165.95)-L0 = -0.7465, ..., Lik(170.5)-L0 = -0.1594, Lik(171)-L0 = -0.0344, Lik(171.5)-L0 = 0.1015, ... Lik(173)-L0 = 0.5730, ..., Lik(200)-L0 = 19.80. So it appears that the function is behaving nicely.
However, I have tried to "automatically" find the root with several different methods and the accuracy is not as good as I would expect...
Using fzero(#(k) Lik(k)-L0): If constrained to the interval (165.95,173), fzero returns k=170.96 with Lik(k)-L0=-0.045. Okay, although not great. And for practical purposes, I would not know such a precise upper bound without a lot of manual trial and error. If I use the interval (165.95,200), fzero returns k=167.19 where Lik(k)-L0 = -0.65, which is rather poor. I have been running these tests with Display set to iter so I can see what's going on, and it appears that fzero hits 167.19 on the 4th iteration and then stays there on the 5th iteration, meaning that the change in k from one iteration to the next is less than TolX (set to 0.001) and thus the procedure ends. The exit flag indicates that it successfully converged to a solution.
I also tried minimizing abs(Lik(k)-L0) using fminbnd (giving upper and lower bounds on k) and fmincon (giving a starting point for k) and ran into similar accuracy issues. In particular, with fmincon one can set both TolX and TolFun, but playing around with these (down to 10^-6, much higher precision than I need) did not make any difference. Confusingly, sometimes the optimizer even finds a k-value on an earlier iteration that is closer to making the objective function zero than the final k-value it returns.
So, it appears that the algorithm is iterating to a certain point, then failing to take any further step of sufficient size to find a better solution. Does anyone know why the algorithm does not take another, larger step? Is there anything I can adjust to change this? (I have looked at the list under optimset but did not come up with anything useful.)
Thanks a lot!

As you seem to have a 'wild' function that does appear to be monotone in the region, a fairly small range of interest, and not a very high requirement in precision I think all criteria are met for recommending the brute force approach.
Assuming it does not take too much time to evaluate the function in a point, please try this:
Find an upperbound xmax and a lower bound xmin, choose a preferred stepsize and evaluate your function at
xmin:stepsize:xmax
If required (and monotonicity really applies) you can get another upper and lower bound by doing this and repeat the process for better accuracy.

I also encountered this problem while using fmincon. Here is how I fixed it.
I needed to find the solution of a function (single variable) within an optimization loop (multiple variables). Because of this, I needed to provide a large interval for the solution of the single variable function. The problem is that fmincon (or fzero) does not converge to a solution if the search interval is too large. To get past this, I solve the problem inside a while loop, with a huge starting upperbound (1e200) with the constraint made on the fval value resulting from the solver. If the resulting fval is not small enough, I decrease the upperbound by a factor. The code looks something like this:
fval = 1;
factor = 1;
while fval>1e-7
UB = factor*1e200;
[x,fval,exitflag] = fminbnd(#(x)function(x,...),LB,UB,options);
factor = factor * 0.001;
end
The solver exits the while when a good solution is found. You can of course play also with the LB by introducing another factor and/or increase the factor step.
My 1st language isn't English so I apologize for any mistakes made.
Cheers,
Cristian

Why not use a simple bisection method? You always evaluate the middle of a certain interval and then reduce this to the right or left part so that you always have one bound giving a negative and the other bound giving a positive value. You can reduce to arbitrary precision very quickly. Since you reduce the interval in half each time it should converge very quickly.
I would suspect however there is some other problem with that function in that it has discontinuities. It seems strange that fzero would work so badly. It's a deterministic function right?

Related

How to set stop criteria for integer programming optimization in yalmip/matlab with xpress solver

I have an integer programming optimization problem, that I solve in matlab using yalmip and xpress as the solver. For the solver I want to set two stopping criteria - a time limit and an optimal gap limit.
I have tried to use the xpress functions MAXTIME and MIPRELSTOP, the matlab code compiles and runs the optimization but the stopping criteria are not transferred to the solver.
The relevant code part looks as follows:
Cons = [sum(sum((dVar_mat.*(x_mat.*y_vec))')) >= a]; %constraint
obj = sum(sum(dVar_mat.*z_mat)); %objective
ops = sdpsettings('solver', 'xpress', 'verbose', 2); %solver options
ops.xpress.MAXTIME = 10000; %set timelimit
ops.xpress.MIPRELSTOP = 0.05; %set relative gap as stop limit
solIP = optimize(Cons, obj, ops); % Solve
When I run the optimzation, a solution is found but significantly later than I would like it to stop. The report says:
STOPPING - MIPRELSTOP target reached (MIPRELSTOP=0.0001)
meaning the MIPRELSTOP target is still set at the default, which is 0.0001. Similarily, the optimization runs over the time limit, disregarding that stopping criterion as well.
How can I correctly set stopping criteria in matlab/yalmip/xpress?
Are you sure you are using the correct name and that it is exposed in the MATLAB interface, i.e. is that options visible in ops.xpress. I don't have xpress installed so I cannot test it.
(btw, YALMIP question are much better asked on the YALMIP Google groups forum)
The 'MAXTIME' control of Xpress Optimizer can be used with positive and negative values: with positive values for 'MAXTIME' when solving MIP problems the limit is only applied once a solution has been found, otherwise the solving continues until the first solution is found; a negative value means a hard stop, so for your case I would recommend that you try a value like -10000 as the time limit.
(See the documentation in the Xpress Optimizer Reference Manual, eg: https://www.fico.com/fico-xpress-optimization/docs/latest/solver/optimizer/HTML/MAXTIME.html)

vectorizing "for" loop with bidirectionally related variables

Last week I asked the following:
https://stackoverflow.com/questions/32658199/vectorizing-gibbs-sampler-in-matlab
Perhaps it was not that clear what I want to do, so this might be more clear.
I would like to vectorize a "for" loop in matlab, where some variables inside of the loop are bidirectionally related. So, here is an example:
A=2;
B=3;
for i=1:10000
A=3*B;
B=exp(A*(-1/2))
end
Thank you once again for your time.
A quick Excel calculation indicates that this quickly converges to 0.483908 (after much less than 10000 loops - so one way of speeding it up would be to check for convergence). If A and B are always 2 and 3 respectively, you could just replace the loop with this value.
Alternatively, using some series analysis you might be able to come up with an analytical expression for B when i is large - although with the nested exponents deriving this is a bit beyond my own abilities!
Edit
A bit of googling reveals this. Wikipedia states that for a tetration of x to infinity (i.e. x^x^x^x^x...), the solution y satisfies y = x^y. In your case, for example, 0.483908 = e^(-3/2)^0.483908, so 0.483908 is a solution. Not sure how you would exploit this though.
Wikipedia also gives a convergence condition, which might be of use to you: x lies between e^-e and e^1/e.
Final Edit (?)
Turns out you need Lambert's W function to solve for equations of the form of y = x^y. There seems to be no native function for this, but there seems to be something in the FileExchange - see here and here.

Matlab, economy QR decomposition, control precision?

There is a [Q,R] = qr(A,0) function in Matlab, which, according to documentation, returns an "economy" version of qr-decomposition of A. norm(A-Q*R) returns ~1e-12 for my data set. Also Q'*Q should theoretically return I. In practice there are small nonzero elements above and below the diagonal (of the order of 1e-6 or so), as well as diagonal elements that are slightly greater than 1 (again, by 1e-6 or so). Is anyone aware of a way to control precision of qr(.,0), or quality(orthogonality) of resulting Q, either by specifying epsilon, or via the number of iterations ? The size of the data set makes qr(A) run out of memory so I have to use qr(A,0).
When I try the non- economy setting, I actually get comparable results for A-Q*R. Even for a tiny matrix containing small numbers as shown here:
A = magic(20);
[Q, R] = qr(A); %Result does not change when using qr(A,0)
norm(A-Q*R)
As such I don't believe the 'economy' is the problem as confirmed by #horchler in the comments, but that you have just ran into the limits of how accurate calculations can be done with data of type 'double'.
Even if you change the accuracy somehow, you will always be dealing with an approximation, so perhaps the first thing to consider here is whether you really need greater accuracy than you already have. If you need more accuracy there may always be a way, but I doubt whether it will be a straightforward one.

fit function of Matlab is really slow

Why is the fitfunction from Matlab so slow? I'm trying to fit a gauss4 so I can get the means of the gaussians.
here's my plot,
I want to get the means from the blue data and red data.
I'm fitting a gaussian there but this function is really slow.
Is there an alternative?
fa = fit(fn', facm', 'gauss4');
acm = [fa.b1 fa.b2 fa.b3 fa.b4];
a_cm = sort(acm, 'ascend');
I would apply some of the options available with fit. These include smoothing by setting SmoothingParam (your data is quite noisy, the alternative of applying a time domain filter may also help*), and setting the values of your initial parameter estimates, with StartPoint. Your fits may also not be converging because you set your tolerances (TolFun, TolX) too low, although from inspection of your fits that does not appear to be the case, in fact the opposite is likely, you probably want to increase the MaxIter and/or MaxFunEvals.
To figure out how to get going you can also try the Spectr-O-Matic toolbox. It requires Matlab 7.12. It includes a script called GaussFit.m to fit gauss4 to data, but it also uses the fit routine and provides examples on how to set and get parameters.
Note that smoothing will of course broaden your peaks, but you can subtract the contribution after the fact. The effect on the mean should not be deleterious, on the contrary, since you are presumably removing noise this should be more accurate.
In general functions will be faster if you apply it to a shorter series. Hence, if speedup is really important you could downsample.
For example, if you have a vector that you want to downsample by a factor 2: (you may need to make sure it fits first)
n = 2;
x = sin(0.01:0.01:pi);
x_downsampled = x(1:n:end)+x(2:n:end);
You will now see that x_downsampled is much smaller (and should thus be easier to process), but will still have the same shape. In your case I think this is sufficient.
To see what you got try:
plot(x)
Now you can simply process x_downsampled and map your solution, for example
f = find(x_downsampled == max(x_downsampled));
location_of_maximum = f * n;
Needless to say this should be done in combination with the most efficient options that the fit function has to offer.

Turn off "smart behavior" in Matlab

There is one thing I do not like on Matlab: It tries sometimes to be too smart. For instance, if I have a negative square root like
a = -1; sqrt(a)
Matlab does not throw an error but switches silently to complex numbers. The same happens for negative logarithms. This can lead to hard to find errors in a more complicated algorithm.
A similar problem is that Matlab "solves" silently non quadratic linear systems like in the following example:
A=eye(3,2); b=ones(3,1); x = A \ b
Obviously x does not satisfy A*x==b (It solves a least square problem instead).
Is there any possibility to turn that "features" off, or at least let Matlab print a warning message in this cases? That would really helps a lot in many situations.
I don't think there is anything like "being smart" in your examples. The square root of a negative number is complex. Similarly, the left-division operator is defined in Matlab as calculating the pseudoinverse for non-square inputs.
If you have an application that should not return complex numbers (beware of floating point errors!), then you can use isreal to test for that. If you do not want the left division operator to calculate the pseudoinverse, test for whether A is square.
Alternatively, if for some reason you are really unable to do input validation, you can overload both sqrt and \ to only work on positive numbers, and to not calculate the pseudoinverse.
You need to understand all of the implications of what you're writing and make sure that you use the right functions if you're going to guarantee good code. For example:
For the first case, use realsqrt instead
For the second case, use inv(A) * b instead
Or alternatively, include the appropriate checks before/after you call the built-in functions. If you need to do this every time, then you can always write your own functions.