How to force MATLAB to not compute as Inf - matlab

I am trying to work through some code that I wrote and one specific line is giving me problems in MATLAB:
Ts = (1+(DatesMod.*Bs)./VolMod).^(VolMod);
VolMod is an array with values on the order of 10^8, DatesMod has a range of values between 700,000 and 740,000, and Bs has a range of values between 0 and 100. Note that this function is mathematically similar to doing lim(n->Inf) (1+B*Dates/n)^n. I understand that this primarily has to do with the methods of allocating numbers on the computer. Is there a clever way I can force it to compute the actual value instead of returning Inf for every value?
Thanks in advance.

Note that the limit
lim(n->Inf) (1+B*Dates/n)^n = exp(B*Dates)
and that exp will overflow to Inf once the argument is greater than 709.9, so there is no real way to compute Ts exactly without arbitrary precision arithmetic.
The best option is probably work in log-precision, e.g. instead of Ts you work with logTs
logTs = VolMod .* log1p((DatesMod.*Bs)./VolMod)
You would then need to rewrite any subsequent expressions to use this without explicitly computing exp(logTs) (as that will overflow).

Related

Matrix Multiplication Simplification not giving same results in code

I want to evaluate the expression xTAx -2yTAx+yTAy in Matlab.
If my calculations are correct, this should be equivalent to solving(x-y)TA(x-y)
My main problem right now is that I am not getting the same results from the above two expressions. I'm wondering if it's a precision error or a conceptual error.
I tried a very simple example with some random values to check my math was right. The mini example I used is as follows
A = [1,2,0;2,1,2;0,2,1];
x = [1;2;3];
y = [4;4;4];
(transpose(x)*A*x)-(2*transpose(y)*A*x)+(transpose(y)*A*(y))
transpose(x-y)*A*(x-y)
Both give 46.
I then tried a more realistic example of values for what I'm doing and it failed. For example
A = [2.66666666666667,-0.333333333333333,0,-0.333333333333333,-0.333333333333333,0,0,0,0;
-0.333333333333333,2.66666666666667,-0.333333333333333,-0.333333333333333,-0.333333333333333,-0.333333333333333,0,0,0;
0,-0.333333333333333,2.66666666666667,0,-0.333333333333333,-0.333333333333333,0,0,0;
-0.333333333333333,-0.333333333333333,0,2.66666666666667,-0.333333333333333,0,-0.333333333333333,-0.333333333333333,0;
-0.333333333333333,-0.333333333333333,-0.333333333333333,-0.333333333333333,2.66666666666667,-0.333333333333333,-0.333333333333333,-0.333333333333333 -0.333333333333333;
0,-0.333333333333333,-0.333333333333333,0,-0.333333333333333,2.66666666666667,0,-0.333333333333333,-0.333333333333333;
0,0,0,-0.333333333333333,-0.333333333333333,0,2.66666666666667,-0.333333333333333,0;
0,0,0,-0.333333333333333,-0.333333333333333,-0.333333333333333,-0.333333333333333,2.66666666666667,-0.333333333333333;
0,0,0,0,-0.333333333333333,-0.333333333333333,0,-0.333333333333333,2.66666666666667];
x =[1.21585420370805;
1.00388159497757e-16;
-0.405284734569351;
1.36809776609658e-16;
-1.04796659533634e-17;
-7.52459042423650e-17;
-0.607927101854027;
-8.49163704356314e-17;
0.303963550927013];
v =[0.0319067068305797,0.00786616506360615,0.0709811622828447,0.0719615328671117;
1.26150800194897e-17,5.77584497721720e-18,7.89740111567879e-18,7.14396333930938e-18;
-0.158358815125228,-0.876275686098803,0.0539216716399594,0.0450616819309899;
7.90937837037453e-18,3.24196519177793e-18,3.99402664932776e-18,4.17486202509670e-18;
5.35533279761622e-18,-8.91723780863019e-19,-1.56128480212603e-18,1.84423677629470e-19;
-2.18478057810330e-17,-6.63779320738873e-18,-3.21099714760257e-18,-3.93612240449303e-18;
-0.0213963226092681,-0.0168256143048771,-0.0175695110350900,-0.0128155908603601;
-4.06029341772399e-18,-5.65705978843172e-18,-1.80182480882056e-18,-1.59281757789645e-18;
0.221482525259710,-0.0576644539359728,0.0163934384910353,0.0197432976432437];
u = [1.37058079022968;
1.79302486419321;
69.4330887239959;
-52.3949662214410];
y = v*u;
Gives 0 for the first expression and 7.1387e-28 for the second. Is this a precision error thing? Which version is better/ more accurate to use and why? Thank you!
I have not checked your simplification, but floating-point math in general is inexact. Even doing the same operations in a different order can give you different results. With the deviations you are seeing I would believe they could reasonably come from inexactness in floating-point math and it is up to you to decide whether the deviations are acceptable for your purpose.
To determine which version is more accurate you would have to compute reference values to compare to, which might prove difficult.

Accuracy error in binomials using MATLAB?

The value is absolute integer, not a floating point to be doubted, also, it is not about an overflow since a double value can hold until 2^1024.
fprintf('%f',realmax)
179769313486231570000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
The problem I am facing in nchoosek function that it doesn't produce exact values
fprintf('%f\n',nchoosek(55,24));
2488589544741302.000000
While it is a percentage error of 2 regarding that binomian(n,m)=binomial(n-1,m)+binomial(n-1,m-1) as follows
fprintf('%f',nchoosek(55-1,24)+nchoosek(55-1,24-1))
2488589544741301.000000
Ps: The exact value is 2488589544741300
this demo shows
What is wrong with MATLAB?
Your understanding of the realmax function is wrong. It's the maximum value which can be stored, but with such large numbers you have a floating point precision error far above 1. The first integer which can not be stored in a double value is 2^53+1, try 2^53==2^53+1 for a simple example.
If the symbolic toolbox is available, the easiest to implement solution is using it:
>> nchoosek(sym(55),sym(24))
ans =
2488589544741300
There is a difference between something that looks like an integer (55) and something that's actually an integer (in terms of variable type).
The way you're calculating it, your values are stored as floating point (which is what realmax is pointing you to - the largest positive floating point number - check intmax('int64') for the largest possible integer value), so you can get floating point errors. An absolute difference of 2 in a large value is not that unexpected - the actual percentage error is tiny.
Plus, you're using %f in your format string - e.g. asking it to display as floating point.
For nchoosek specifically, from the docs, the output is returned as a nonnegative scalar value, of the same type as inputs n and k, or, if they are different types, of the non-double type (you can only have different input types if one is a double).
In Matlab, when you type a number directly into a function input, it generally defaults to a float. You have to force it to be an integer.
Try instead:
fprintf('%d\n',nchoosek(int64(55),int64(24)));
Note: %d not %f, converting both inputs to specifically integer. The output of nchoosek here should be of type int64.
I don't have access to MATLAB, but since you're obviously okay working with Octave I'll post my observations based on that.
If you look at the Octave source code using edit nchoosek or here you'll see that the equation for calculating the binomial coefficient is quite simple:
A = round (prod ((v-k+1:v)./(1:k)));
As you can see, there are k divisions, each with the possibility of introducing some small error. The next line attempts to be helpful and warn you of the possibility of loss of precision:
if (A*2*k*eps >= 0.5)
warning ("nchoosek", "nchoosek: possible loss of precision");
So, if I may slightly modify your final question, what is wrong with Octave? I would say nothing is wrong. The authors obviously knew of the possibility of imprecision and included a check to warn users when that possibility arises. So the function is working as intended. If you require greater precision for your application than the built-in function provides, it looks as though you'll need to code (or find) something that calculates the intermediate results with greater precision.

Matlab, economy QR decomposition, control precision?

There is a [Q,R] = qr(A,0) function in Matlab, which, according to documentation, returns an "economy" version of qr-decomposition of A. norm(A-Q*R) returns ~1e-12 for my data set. Also Q'*Q should theoretically return I. In practice there are small nonzero elements above and below the diagonal (of the order of 1e-6 or so), as well as diagonal elements that are slightly greater than 1 (again, by 1e-6 or so). Is anyone aware of a way to control precision of qr(.,0), or quality(orthogonality) of resulting Q, either by specifying epsilon, or via the number of iterations ? The size of the data set makes qr(A) run out of memory so I have to use qr(A,0).
When I try the non- economy setting, I actually get comparable results for A-Q*R. Even for a tiny matrix containing small numbers as shown here:
A = magic(20);
[Q, R] = qr(A); %Result does not change when using qr(A,0)
norm(A-Q*R)
As such I don't believe the 'economy' is the problem as confirmed by #horchler in the comments, but that you have just ran into the limits of how accurate calculations can be done with data of type 'double'.
Even if you change the accuracy somehow, you will always be dealing with an approximation, so perhaps the first thing to consider here is whether you really need greater accuracy than you already have. If you need more accuracy there may always be a way, but I doubt whether it will be a straightforward one.

Logical indexing and double precision numbers

I am trying to solve a non-linear system of equations using the Newton-Raphson iterative method, and in order to explore the parameter space of my variables, it is useful to store the previous solutions and use them as my first initial guess so that I stay in the basin of attraction.
I currently save my solutions in a structure array that I store in a .mat file, in about this way:
load('solutions.mat','sol');
str = struct('a',Param1,'b',Param2,'solution',SolutionVector);
sol=[sol;str];
save('solutions.mat','sol');
Now, I do another run, in which I need the above solution for different parameters NewParam1 and NewParam2. If Param1 = NewParam1-deltaParam1, and Param2 = NewParam2 - deltaParam2, then
load('solutions.mat','sol');
index = [sol.a]== NewParam1 - deltaParam1 & [sol.b]== NewParam2 - deltaParam2;
% logical index to find solution from first block
SolutionVector = sol(index).solution;
I sometimes get an error message saying that no such solution exists. The problem lies in the double precisions of my parameters, since 2-1 ~= 1 can happen in Matlab, but I can't seem to find an alternative way to achieve the same result. I have tried changing the numerical parameters to strings in the saving process, but then I ran into problems with logical indexing with strings.
Ideally, I would like to avoid multiplying my parameters by a power of 10 to make them integers as this will make the code quite messy to understand due to the number of parameters. Other than that, any help will be greatly appreciated. Thanks!
You should never use == when comparing double precision numbers in MATLAB. The reason is, as you state in the the question, that some numbers can't be represented precisely using binary numbers the same way 1/3 can't be written precisely using decimal numbers.
What you should do is something like this:
index = abs([sol.a] - (NewParam1 - deltaParam1)) < 1e-10 & ...
abs([sol.b] - (NewParam2 - deltaParam2)) < 1e-10;
I actually recommend not using eps, as it's so small that it might actually fail in some situations. You can however use a smaller number than 1e-10 if you need a very high level of accuracy (but how often do we work with numbers less than 1e-10)?

Matlab not accepting whole number as index

I am using a while loop with an index t starting from 1 and increasing with each loop.
I'm having problems with this index in the following bit of code within the loop:
dt = 100000^(-1);
t = 1;
equi = false;
while equi==false
***some code that populates the arrays S(t) and I(t)***
t=t+1;
if (t>2/dt)
n = [S(t) I(t)];
np = [S(t-1/dt) I(t-1/dt)];
if sum((n-np).^2)<1e-5
equi=true;
end
end
First, the code in the "if" statement is accessed at t==200000 instead of at t==200001.
Second, the expression S(t-1/dt) results in the error message "Subscript indices must either be real positive integers or logicals", even though (t-1/dt) is whole and equals 1.0000e+005 .
I guess I can solve this using "round", but this worked before and suddenly doesn't work and I'd like to figure out why.
Thanks!
the expression S(t-1/dt) results in the error message "Subscript indices must either be real positive integers or logicals", even though (t-1/dt) is whole and equals 1.0000e+005
Is it really? ;)
mod(200000 - 1/dt, 1)
%ans = 1.455191522836685e-11
Your index is not an integer. This is one of the things to be aware of when working with floating point arithmetic. I suggest reading this excellent resource: "What every computer scientist should know about floating-point Arithmetic".
You can either use round as you did, or store 1/dt as a separate variable (many options exist).
Matlab is lying to you. You're running into floating point inaccuracies and Matlab does not have an honest printing policy. Try printing the numbers with full precision:
dt = 100000^(-1);
t = 200000;
fprintf('2/dt == %.12f\n',2/dt) % 199999.999999999971
fprintf('t - 1/dt == %.12f\n',t - 1/dt) % 100000.000000000015
While powers of 10 are very nice for us to type and read, 1e-5 (your dt) cannot be represented exactly as a floating point number. That's why your resulting calculations aren't coming out as even integers.
The statement
S(t-1/dt)
can be replaced by
S(uint32(t-1/dt))
And similarly for I.
Also you might want to save 1/dt hardcoded as 100000 as suggested above.
I reckon this will improve the comparison.