How to find median trajectory of a spiral movement? - average

Lets some objects make complex spiral moving in 3D and we have get their trajectories projected on a plane.
How to find a median trajectory of such movements and estimate the amplitudes of spirals?
I assume that this requires averaging the coordinates of the trajectories, then somehow finding the distances from the extreme points of the trajectories to the midline. But I don't know a concrete algorithm for this. Can someone suggest this algorithm?
By median trajectory I mean a line that ges between path waves, something like linew on a picture below.

This is a case for a Kalman filter, but this method is a little complicated.
A simpler one is a moving average, with a number of samples that covers as closes as possible to a full period (which you can estimate visually).
Regarding the distances, you can compute the shortest Euclidean distance of every point to the midline (using a line-to-segment function). This will yield an alternating plot, which you can smoothen with a moving maximum (rather than average) over a period.

Related

How to find distance mid point of bezier curve?

I am making game in Unity engine, where car is moving along the bezier curve by percentage of bezier curve legth.
On this image you can see curve with 8 stop points (yellow spheres). Between each stop point is 20% gap of total distance.
On the image above everything is working correctly, but when I move handles, that the handles have different length problem occurs.
As you can see on image above, distances between stop points are not equal. It is because of my algorithm, because I am finding point of segment by multiplying segment length by interpolation (t). In short problem is that: if t=0.5 it is not in the 50% percent of the segment. As you can see on first image, stop points are in half of segment, but in the second image it is not in half of segment. This problem will be fixed, if there is some mathematical formula, how to find distance middle point.
As you can see on the image above, there are two mid points. T param mid point can be found by setting t to 0.5 (it is what i am doing now), but it is not half of the distance.
How can I find distance mid point (for cubic bezier curve, that have handles in different distance)?
You have correctly observed that the parameter value t=0.5 is generally not the point in the middle of the length. That is a good start but the difficulty lies in the mathematics beneath.
Denoting the components of your parametric curve by x(t) and y(t), the length of the curve
between t=0 (the beginning) and a chosen parameter value t = u is equal to
What you are trying to do is to find u such that l(u) is one half of l(1). This is sometimes possible but often difficult or impossible. So what can you do?
One possibility is to approximate the point you want. A straightforward way is to approximate your Bezier curve by a piecewise linear curve (simply by choosing many parameter values 0 = t_0 < t_1 < ... < t_n = 1 and connecting the values in these parameters by line segments). Now it is easy to compute the entire length (Pythagoras Theorem is your friend) as well as the middle point (walk along the piecewise linear curve the prescribed length). The more points you sample, the more precise you will be and the more time your computation will take, so there is a trade-off. Of course, you can use a more complicated numerical scheme for the approximation but that is beyond the scope of the answer.
The second possibility is to restrict yourself to a subclass of Bezier curves that will let you do what you want. These are called Pythagorean-Hodograph (shortly PH) curves. They have the extremely useful property that there exists a polynomial sigma(t) such that
This means that you can compute the integral above and search for the correct value of u. However, everything comes at a price and the price here is that you will have less freedom, where to put the control points (for me as a mathematician, a cubic Bézier curve has four control points; computer graphics people often speak of "handles" so you might have to translate into your terminology). For the cubic case you can find the conditions on slide 15 of this seminar talk by Vito Vitrih.
Denote:
the control points,
;
then the Bézier curve is a PH curve if and only if
.
It is up to you to figure out, if you can enforce this condition in your situation or if it is too restrictive for your application.

Why do we need to triangulate a convex polygon in order to sample uniformly from it?

Suppose I want to uniformly sample points inside a convex polygon.
One of the most common approaches described here and on the internet in general consists in triangulation of the polygon and generate uniformly random points inside each triangles using different schemes.
The one I find most practical is to generate exponential distributions from uniform ones taking -log(U) for instance and normalizing the sum to one.
Within Matlab, we would have this code to sample uniformly inside a triangle:
vertex=[0 0;1 0;0.5 0.5]; %vertex coordinates in the 2D plane
mix_coeff=rand(10000,size(vertex,1)); %uniform generation of random coefficients
x=-log(x); %make the uniform distribution exponential
x=bsxfun(#rdivide,x,sum(x,2)); %normalize such that sum is equal to one
unif_samples=x*vertex; %calculate the 2D coordinates of each sample inside the triangle
And this works just fine:
However, using the exact same scheme for anything other than a triangle just fails. For instance for a quadrilateral, we get the following result:
Clearly, sampling is not uniform anymore and the more vertices you add, the more difficult it is to "reach" the corners.
If I triangulate the polygon first then uniform sampling in each triangle is easy and obviously gets the job done.
But why? Why is it necessary to triangulate first?
Which specific property have triangle (and simplexes in general since this behaviour seems to extend to n-dimensional constructions) that makes it work for them and not for the other polygons?
I would be grateful if someone could give me an intuitive explanation of the phenomena or just point to some reference that could help me understand what is going on.
I should point out that it's not strictly necessary to triangulate a polygon in order to sample uniformly from it. Another way to sample a shape is rejection sampling and proceeds as follows.
Determine a bounding box that covers the entire shape. For a polygon, this is as simple as finding the highest and lowest x and y coordinates of the polygon.
Choose a point uniformly at random in the bounding box.
If the point lies inside the shape, return that point. (For a polygon, algorithms that determine this are collectively called point-in-polygon predicates.) Otherwise, go to step 2.
However, there are two things that affect the running time of this algorithm:
The time complexity depends greatly on the shape in question. In general, the acceptance rate of this algorithm is the volume of the shape divided by the volume of the bounding box. (In particular, the acceptance rate is typically very low for high-dimensional shapes, in part because of the curse of dimensionality: typical shapes cover a much smaller volume than their bounding boxes.)
Also, the algorithm's efficiency depends on how fast it is to determine whether a point lies in the shape in question. Because of this, it's often the case that complex shapes are made up of simpler shapes, such as triangles, circles, and rectangles, for which it's easy to determine whether a point lies in the complex shape or to determine that shape's bounding box.
Note that rejection sampling can be applied, in principle, to sample any shape of any dimension, not just convex 2-dimensional polygons. It thus works for circles, ellipses, and curved shapes, among others.
And indeed, a polygon could, in principle, be decomposed into a myriad of shapes other than triangles, one of those shapes sampled in proportion to its area, and a point in that shape sampled at random via rejection sampling.
Now, to explain a little about the phenomenon you give in your second image:
What you have there is not a 4-sided (2-dimensional) polygon, but rather a 3-dimensional simplex (namely a tetrahedron) that was projected to 2-dimensional space. (See also the previous answer.) This projection explains why points inside the "polygon" appear denser in the interior than in the corners. You can see why if you picture the "polygon" as a tetrahedron with its four corners at different depths. With higher dimensions of simplex, this phenomenon becomes more and more acute, again due partly to the curse of dimensionality.
Well, there are less expensive methods to sample uniform in the triangle. You're sampling Dirichlet distribution in the simplex d+1 and taking projection, computing exponents and such. I would refer you to the code sample and paper reference here, only square roots, a lot simpler algorithm.
Concerning uniform sampling in complex areas (quadrilateral in your case) general approach is quite simple:
Triangulate. You'll get two triangles with vertices (a,b,c)0 and (a,b,c)1
Compute triangle areas A0 and A1 using, f.e. Heron's formula
First step, randomly select one of the triangles based on area.
if (random() < A0/(A0+A1)) select triangle 0 else select triangle 1. random() shall return float in the range [0...1]
Sample point in selected triangle using method mentioned above.
This approach could be easily extended to sample for any complex area with uniform density: N triangles, Categorical distribution sampling with probabilities proportional to areas will get you selected triangle, then sample point in the triangle.
UPDATE
We have to triangulate because we know good (fast, reliable, only 2 RNG calls, ...) algorithm to sample with uniform density in triangle. Then we could build on it, good software is all about reusability, and pick one triangle (at the cost of another rng call) and then back to sample from it, total three RNG calls to get uniform density sampling from ANY area, convex and concave alike. Pretty universal method, I would say. And triangulation is a solved problem, and
basically you do it once (triangulate and build weights array Ai/Atotal) and sample till infinity.
Another part of the answer is that we (me, to be precise, but I've worked with random sampling ~20years) don't know good algorithm to sample precisely with uniform density from arbitrary convex more-than-three-vertices closed polygon. You proposed some algorithm based on hunch and it didn't work out. And it shouldn't work, because what you use is Dirichlet distribution in d+1 simplex and project it back to d hyperplane. It is not extendable even to quadrilateral, not talking to some arbitrary convex polygon. And I would state conjecture, that even such algorithm exist, n-vertices polygon would require n-1 calls to RNG, which means there is no triangulation setup, but each call to get a point would be rather expensive.
Few words on complexity of the sampling. Assuming you did triangulation, then with 3 calls to RNG you'll get one point sampled uniformly inside your polygon.
But complexity of sampling wrt number of triangles N would be O(log(N)) at best. YOu basically would do binary search over partial sums of Ai/Atotal.
You could do a bit better, there is O(1) (constant time) sampling using Alias sampling of the triangle. The cost would be a bit more setup time, but it could be fused with triangulation. Also, it would require one more RNG calls. So for four RNG calls you would have constant point sampling time independent of complexity of your polygon, works for any shape

finding gradient/curvature of surface defined by arbitrary, non-grid-spaced points

So I have a 3 dimensional matrix of points that (presumably) define a surface. For my purposes, X and Y can be random values but when plotted along with their Z coordinates, they will define some undulating surface. I'd like to measure the local curvatures of said surface, and in order to do that, I need to be able to find the gradient of said surface, at which point calculating the curvature is trivial.
I have not yet found an implementation of how to measure this curvature that doesn't make use of Matlab's gradient function. The problem with Matlab's gradient function is that it assumes that the points are in some sort of order, similar to diff(X). This would suffice if my points were spaced along a grid, which is not necessarily the case.
One possible solution to measuring the gradient is to give in and assign each point to a discrete coordinate in a grid in the XY plane, thus overcoming this issue. However, this solution seems somewhat inelegant and was curious to see if anyone had suggestions. Thanks!
You can use griddata to interpolate from your scattered data points to grid spaced points and then calculate the gradient.

Calculating acceleration peak from velocity

I am trying to convert an array of velocity values to acceleration values. I understand that acceleration is the integral of velocity, but don't know how to acheive this. I am using MATLAB, so if anyone can offer a solution in this language, I would be very grateful! See the graph below:
The yellow line plots the velocity and the vertical dotted lines show the peaks and troughs of that waveform (peaks and troughs found using peakdet). The green horizontal stuff in the middle is unrelated to this question.
What I am trying to isolate is the steepest part of the large downward slopes on the curve above. Can anyone offer any advice on how to calculate this?
P.S. I am aware that quad() is the function used to integrate in MATLAB but don't know how to implement it in this situation.
Acceleration is a derivative of velocity.
If your velocity values are stored in v, you can get a quick numerical derivative of v with
a = diff(v)
Be aware that if v is a real rather than synthetic signal, a is likely to be pretty noisy, so some smoothing may be in order, depending on how you're going to use it.

iPhone - creating the smoothest curve

I have this iPhone app that has an array containing around 50 to 100 points. How do I calculate the smoothest curve that will fit the points? It can be bezier, cubic, quadratic, whatever. It just have to look smooth and fit as much as possible all points (obviously, as I did in my drawing, to create a smooth curve, some points have to be created out of the original set... no problem).
See picture:
Maybe you are looking for a Cubic Spline
Cubic Spline
These are the functions with continous second derivative that interpolate your nodes with the smallest curvature so they oscillate less. And there are lots of examples and algorithms to find these.