How to find distance mid point of bezier curve? - unity3d

I am making game in Unity engine, where car is moving along the bezier curve by percentage of bezier curve legth.
On this image you can see curve with 8 stop points (yellow spheres). Between each stop point is 20% gap of total distance.
On the image above everything is working correctly, but when I move handles, that the handles have different length problem occurs.
As you can see on image above, distances between stop points are not equal. It is because of my algorithm, because I am finding point of segment by multiplying segment length by interpolation (t). In short problem is that: if t=0.5 it is not in the 50% percent of the segment. As you can see on first image, stop points are in half of segment, but in the second image it is not in half of segment. This problem will be fixed, if there is some mathematical formula, how to find distance middle point.
As you can see on the image above, there are two mid points. T param mid point can be found by setting t to 0.5 (it is what i am doing now), but it is not half of the distance.
How can I find distance mid point (for cubic bezier curve, that have handles in different distance)?

You have correctly observed that the parameter value t=0.5 is generally not the point in the middle of the length. That is a good start but the difficulty lies in the mathematics beneath.
Denoting the components of your parametric curve by x(t) and y(t), the length of the curve
between t=0 (the beginning) and a chosen parameter value t = u is equal to
What you are trying to do is to find u such that l(u) is one half of l(1). This is sometimes possible but often difficult or impossible. So what can you do?
One possibility is to approximate the point you want. A straightforward way is to approximate your Bezier curve by a piecewise linear curve (simply by choosing many parameter values 0 = t_0 < t_1 < ... < t_n = 1 and connecting the values in these parameters by line segments). Now it is easy to compute the entire length (Pythagoras Theorem is your friend) as well as the middle point (walk along the piecewise linear curve the prescribed length). The more points you sample, the more precise you will be and the more time your computation will take, so there is a trade-off. Of course, you can use a more complicated numerical scheme for the approximation but that is beyond the scope of the answer.
The second possibility is to restrict yourself to a subclass of Bezier curves that will let you do what you want. These are called Pythagorean-Hodograph (shortly PH) curves. They have the extremely useful property that there exists a polynomial sigma(t) such that
This means that you can compute the integral above and search for the correct value of u. However, everything comes at a price and the price here is that you will have less freedom, where to put the control points (for me as a mathematician, a cubic Bézier curve has four control points; computer graphics people often speak of "handles" so you might have to translate into your terminology). For the cubic case you can find the conditions on slide 15 of this seminar talk by Vito Vitrih.
Denote:
the control points,
;
then the Bézier curve is a PH curve if and only if
.
It is up to you to figure out, if you can enforce this condition in your situation or if it is too restrictive for your application.

Related

How to find median trajectory of a spiral movement?

Lets some objects make complex spiral moving in 3D and we have get their trajectories projected on a plane.
How to find a median trajectory of such movements and estimate the amplitudes of spirals?
I assume that this requires averaging the coordinates of the trajectories, then somehow finding the distances from the extreme points of the trajectories to the midline. But I don't know a concrete algorithm for this. Can someone suggest this algorithm?
By median trajectory I mean a line that ges between path waves, something like linew on a picture below.
This is a case for a Kalman filter, but this method is a little complicated.
A simpler one is a moving average, with a number of samples that covers as closes as possible to a full period (which you can estimate visually).
Regarding the distances, you can compute the shortest Euclidean distance of every point to the midline (using a line-to-segment function). This will yield an alternating plot, which you can smoothen with a moving maximum (rather than average) over a period.

Can I compute contour orientation without using polygon area sign?

Most of the times, I determine contour orientation generating 2D points and computing the closed polygon area. Depending on the area value sign I can understand if the contour is oriented clockwise or not (see How to determine if a list of polygon points are in clockwise order?).
Would it be possible to do the same computations without generating 2D points? I mean, relying only on geometric curve properties?
We are interested in determining the orientation of contours like these ones without sampling them with 2D points.
EDIT: Some interesting solutions can be found here:
https://math.stackexchange.com/questions/423718/general-way-to-find-out-whether-a-curve-is-positively-oriented
Scientific paper: Determining the orientation of closed planar curves, DJ Filip (1990)
How are those geometric curves defined?
Do you have an angle for them? The radius doesn't matter, only the difference between entry-angle and exit-angle of each curve.
In that case, a trivial idea crossing my mind is to just sum up all the angles. If the result is positive, you know you had more curves towards the right meaning it's a clockwise contour. If it was negative, then more curves were leftwards -> anti-clockwise contour. (assuming that positive angels determine a right-curve and vica versa)
After thinking about this for awhile, for polygons that contain arcs I think there are three ways to do this.
One, is to break the arcs into line segments and then use the area formula as described above. The success of this approach seems to be tied to how close the interpolation of the arcs is as this could cause the polygon to intersect itself.
A quicker way than the above would be to do the interpolation of the arcs and then find a vertex in the corner (minimal Y, if tie minimal X) and use the sign of the cross product for that vertex. Positive CCW, negative CW. Again, this is still tied to the accuracy of the interpolation.
I think a better approach would be to find the midpoint of the arc and create two line segments, one from the beginning of the arc to the midpoint and another from the midpoint to the end of the arc and replace the arc with these line segments. Now you have a polygon with only line segments. Then you can add up all the normalized cross products of all the vertices. The sign will tell you the direction. Positive is counter-clockwise, negative is clockwise. In this case it doesn't matter if the polygon self-intersects.

Why do we need to triangulate a convex polygon in order to sample uniformly from it?

Suppose I want to uniformly sample points inside a convex polygon.
One of the most common approaches described here and on the internet in general consists in triangulation of the polygon and generate uniformly random points inside each triangles using different schemes.
The one I find most practical is to generate exponential distributions from uniform ones taking -log(U) for instance and normalizing the sum to one.
Within Matlab, we would have this code to sample uniformly inside a triangle:
vertex=[0 0;1 0;0.5 0.5]; %vertex coordinates in the 2D plane
mix_coeff=rand(10000,size(vertex,1)); %uniform generation of random coefficients
x=-log(x); %make the uniform distribution exponential
x=bsxfun(#rdivide,x,sum(x,2)); %normalize such that sum is equal to one
unif_samples=x*vertex; %calculate the 2D coordinates of each sample inside the triangle
And this works just fine:
However, using the exact same scheme for anything other than a triangle just fails. For instance for a quadrilateral, we get the following result:
Clearly, sampling is not uniform anymore and the more vertices you add, the more difficult it is to "reach" the corners.
If I triangulate the polygon first then uniform sampling in each triangle is easy and obviously gets the job done.
But why? Why is it necessary to triangulate first?
Which specific property have triangle (and simplexes in general since this behaviour seems to extend to n-dimensional constructions) that makes it work for them and not for the other polygons?
I would be grateful if someone could give me an intuitive explanation of the phenomena or just point to some reference that could help me understand what is going on.
I should point out that it's not strictly necessary to triangulate a polygon in order to sample uniformly from it. Another way to sample a shape is rejection sampling and proceeds as follows.
Determine a bounding box that covers the entire shape. For a polygon, this is as simple as finding the highest and lowest x and y coordinates of the polygon.
Choose a point uniformly at random in the bounding box.
If the point lies inside the shape, return that point. (For a polygon, algorithms that determine this are collectively called point-in-polygon predicates.) Otherwise, go to step 2.
However, there are two things that affect the running time of this algorithm:
The time complexity depends greatly on the shape in question. In general, the acceptance rate of this algorithm is the volume of the shape divided by the volume of the bounding box. (In particular, the acceptance rate is typically very low for high-dimensional shapes, in part because of the curse of dimensionality: typical shapes cover a much smaller volume than their bounding boxes.)
Also, the algorithm's efficiency depends on how fast it is to determine whether a point lies in the shape in question. Because of this, it's often the case that complex shapes are made up of simpler shapes, such as triangles, circles, and rectangles, for which it's easy to determine whether a point lies in the complex shape or to determine that shape's bounding box.
Note that rejection sampling can be applied, in principle, to sample any shape of any dimension, not just convex 2-dimensional polygons. It thus works for circles, ellipses, and curved shapes, among others.
And indeed, a polygon could, in principle, be decomposed into a myriad of shapes other than triangles, one of those shapes sampled in proportion to its area, and a point in that shape sampled at random via rejection sampling.
Now, to explain a little about the phenomenon you give in your second image:
What you have there is not a 4-sided (2-dimensional) polygon, but rather a 3-dimensional simplex (namely a tetrahedron) that was projected to 2-dimensional space. (See also the previous answer.) This projection explains why points inside the "polygon" appear denser in the interior than in the corners. You can see why if you picture the "polygon" as a tetrahedron with its four corners at different depths. With higher dimensions of simplex, this phenomenon becomes more and more acute, again due partly to the curse of dimensionality.
Well, there are less expensive methods to sample uniform in the triangle. You're sampling Dirichlet distribution in the simplex d+1 and taking projection, computing exponents and such. I would refer you to the code sample and paper reference here, only square roots, a lot simpler algorithm.
Concerning uniform sampling in complex areas (quadrilateral in your case) general approach is quite simple:
Triangulate. You'll get two triangles with vertices (a,b,c)0 and (a,b,c)1
Compute triangle areas A0 and A1 using, f.e. Heron's formula
First step, randomly select one of the triangles based on area.
if (random() < A0/(A0+A1)) select triangle 0 else select triangle 1. random() shall return float in the range [0...1]
Sample point in selected triangle using method mentioned above.
This approach could be easily extended to sample for any complex area with uniform density: N triangles, Categorical distribution sampling with probabilities proportional to areas will get you selected triangle, then sample point in the triangle.
UPDATE
We have to triangulate because we know good (fast, reliable, only 2 RNG calls, ...) algorithm to sample with uniform density in triangle. Then we could build on it, good software is all about reusability, and pick one triangle (at the cost of another rng call) and then back to sample from it, total three RNG calls to get uniform density sampling from ANY area, convex and concave alike. Pretty universal method, I would say. And triangulation is a solved problem, and
basically you do it once (triangulate and build weights array Ai/Atotal) and sample till infinity.
Another part of the answer is that we (me, to be precise, but I've worked with random sampling ~20years) don't know good algorithm to sample precisely with uniform density from arbitrary convex more-than-three-vertices closed polygon. You proposed some algorithm based on hunch and it didn't work out. And it shouldn't work, because what you use is Dirichlet distribution in d+1 simplex and project it back to d hyperplane. It is not extendable even to quadrilateral, not talking to some arbitrary convex polygon. And I would state conjecture, that even such algorithm exist, n-vertices polygon would require n-1 calls to RNG, which means there is no triangulation setup, but each call to get a point would be rather expensive.
Few words on complexity of the sampling. Assuming you did triangulation, then with 3 calls to RNG you'll get one point sampled uniformly inside your polygon.
But complexity of sampling wrt number of triangles N would be O(log(N)) at best. YOu basically would do binary search over partial sums of Ai/Atotal.
You could do a bit better, there is O(1) (constant time) sampling using Alias sampling of the triangle. The cost would be a bit more setup time, but it could be fused with triangulation. Also, it would require one more RNG calls. So for four RNG calls you would have constant point sampling time independent of complexity of your polygon, works for any shape

Oriented Bounding Box algorithm, Need some understanding/clarification of a few lines of existing (working) code

I am reviewing some MATLAB code that is publicly available at the following location:
https://github.com/mattools/matGeom/blob/master/matGeom/geom2d/orientedBox.m
This is an implementation of the rotating calipers algorithm on the convex hull of a set of points in order to compute an oriented bounding box. My review was to understand intuitively how the algorithm works however I seek clarification on certain lines within the file which I am confused on.
On line 44: hull = bsxfun(#minus, hull, center);. This appears to translate all the points within the convex hull set so the calculated centroid is at (0,0). Is there any particular reason why this is performed? My only guess would be that it allows straightforward rotational transforms later on in the code, as rotating about the real origin would cause significant problems.
On line 71 and 74: indA2 = mod(indA, nV) + 1; , indB2 = mod(indB, nV) + 1;. Is this a trick in order to prevent the access index going out of bounds? My guess is to prevent out of bounds access, it will roll the index over upon reaching the end.
On line 125: y2 = - x * sit + y * cot;. This is the correct transformation as the code behaves properly, but I am not sure why this is actually used and different from the other rotational transforms done later and also prior (with the calls to rotateVector). My best guess is that I am simply not visualizing what rotation needs to be done in my head correctly.
Side note: The external function calls vectorAngle, rotateVector, createLine, and distancePointLine can all be found under the same repository, in files named after the function name (as per MATLAB standard). They are relatively uninteresting and do what you would expect aside from the fact that there is normalization of vector angles going on.
I'm the author of the above piece of code, so I can give some explanations about it:
First of all, the algorithm is indeed a rotating caliper algorithm. In the current implementation, only the width of the algorithm is tested (I did not check the west and est vertice). Actually, it seems the two results correspond most of the time.
Line 44 -> the goal of translating to origin was to improve numerical accuracy. When a polygon is located far away from the origin, coordinates may be large, and close together. Many computation involve products of coordinates. By translating the polygon around the origin, the coordinates are smaller, and the precision of the resulting products are expected to be improved. Well, to be honest, I did not evidenced this effect directly, this is more a careful way of coding than a fix…
Line 71-74! Yes. The idea is to find the index of the next vertex along the polygon. If the current vertex is the last vertex of the polygon, then the next vertex index should be 1. The use of modulo rescale between 0 and N-1. The two lines ensure correct iteration.
Line 125: There are several transformations involved. Using the rotateVector() function, one simply computes the minimal with for a given edge. On line 125, one rotate the points (of the convex hull) to align with the “best” direction (the one that minimizes the width). The last change of coordinates (lines 132->140) is due to the fact that the center of the oriented box is different from the centroid of the polygon. Then we add a shift, which is corrected by the rotation.
I did not really look at the code, this is an explanation of how the rotating calipers work.
A fundamental property is that the tightest bounding box is such that one of its sides overlaps an edge of the hull. So what you do is essentially
try every edge in turn;
for a given edge, seen as being horizontal, south, find the farthest vertices north, west and east;
evaluate the area or the perimeter of the rectangle that they define;
remember the best area.
It is important to note that when you switch from an edge to the next, the N/W/E vertices can only move forward, and are readily found by finding the next decrease of the relevant coordinate. This is how the total processing time is linear in the number of edges (the search for the initial N/E/W vertices takes 3(N-3) comparisons, then the updates take 3(N-1)+Nn+Nw+Ne comparisons, where Nn, Nw, Ne are the number of moves from a vertex to the next; obviously Nn+Nw+Ne = 3N in total).
The modulos are there to implement the cyclic indexing of the edges and vertices.

Detecting overlapped elliptical regions in image (MATLAB)

I have a multiple plants in a single binary image. How would I identify each leaf in the image assuming that each leaf is approximately elliptical?
example input: http://i.imgur.com/BwhLVmd.png
I was thinking a good place to start would be finding the tip of each leaf and then getting the center of each plant. Then I could fit the curves starting from the tip and then going to the center. I've been looking online and saw something involving a watershed method, but I do not know where to begin with that idea.
You should be aware that these things are tricky to get working robustly - there will always be a failure case.
This said, I think your idea is not bad.
You could start as follows:
Identify the boundary curve of each plant (i.e. pixels with both foreground and background in their neighbourhood).
Compute the centroid of each plant.
Convert each plant boundary to a polar coordinate system, with the centroid as the origin. This amounts to setting up a coordinate system with the distance of each boundary curve point on the Y axis and the angle on the X axis.
In this representation of the boundary curve, try to identify maxima; these are the tips of the leaves. You will probably need to do some smoothing. Use the parts of the curve before and after the maxima the start fitting your ellipses or some other shape.
Generally, a polar coordinate system is always useful for analysing stuff thats roughly circular.
To fit you ellipses, once you have a rough initial position, I would probably try an EM-style approach.
I would do something like this (I is your binary image)
I=bwmorph(bwmorph(I, 'bridge'), 'clean');
SK=bwmorph(I, 'skel', Inf);
endpts = bwmorph(SK,'endpoints');
props=regionprops(I, 'All');
And then connect every segment from the centroids listed in props.centroid to the elements of endpts that should give you your leaves (petals?).
A bit of filtering is probably necessary, bwmorph is your friend. Have fun!