Hashes vs Numeric id's - hash

When creating a web application that some how displays the display of a unique identifier for a recurring entity (videos on YouTube, or book section on a site like mine), would it be better to use a uniform length identifier like a hash or the unique key of the item in the database (1, 2, 3, etc).
Besides revealing a little, what I think is immaterial, information about the internals of your app, why would using a hash be better than just using the unique id?
In short: Which is better to use as a publicly displayed unique identifier - a hash value, or a unique key from the database?
Edit: I'm opening up this question again because Dmitriy brought up the good point of not tying down the naming to db specific property. Will this sort of tie down prevent me from optimizing/normalizing the database in the future?
The platform uses php/python with ISAM /w MySQL.

Unless you're trying to hide the state of your internal object ID counter, hashes are needlessly slow (to generate and to compare), needlessly long, needlessly ugly, and needlessly capable of colliding. GUIDs are also long and ugly, making them just as unsuitable for human consumption as hashes are.
For inventory-like things, just use a sequential (or sharded) counter instead. If you migrate to a different database, you will just have to initialize the new counter to a value at least as large as your largest existing record ID. Pretty much every database server gives you a way to do this.
If you are trying to hide the state of your counter, perhaps because you're counting users and don't want competitors to know how many you have, I suggest avoiding the display of your internal IDs. If you insist on displaying them and don't want the drawbacks of a hash, you might consider using a maximal-period linear feedback shift register to generate IDs.

I typically use hashes if I don't want the user to be able to guess the next ID in the series. But for your book sections, I'd stick with numerical id's.

Using hashes is preferable in case you need to rebuild your database for some reason, for example, and the ordering changes. The ordinal numbers will move around -- but the hashes will stay the same.
Not relying on the order you put things into a box, but on properties of the things, just seems.. safer.
But watch out for collisions, obviously.

With hashes you
Are free to merge the database with a similar one (or a backup), if necessary
Are not doing something that could help some guessing attacks even a bit
Are not disclosing more private information about the user than necessary, e.g. if somebody sees a user number 2 in your current database log in, they're getting information that he is an oldie.
(Provided that you use a long hash or a GUID,) greatly helping youself in case you're bought by YouTube and they decide to integrate your databases.
Helping yourself in case there appears a search engine that indexes by GUID.
Please let us know if the last 6 months brought you some clarity on this question...

Hashes aren't guaranteed to be unique, nor, I believe, consistent.

will your users have to remember/use the value? or are you looking at it from a security POV?
From a security perspective, it shouldn't matter - since you shouldn't just be relying on people not guessing a different but valid ID of something they shouldn't see in order to keep them out.

Yeah, I don't think you're looking for a hash - you're more likely looking for a Guid.If you're on the .Net platform, try System.Guid.
However, the most important reason not to use a Guid is for performance. Doing database joins and lookups on (long) strings is very suboptimal. Numbers are fast. So, unless you really need it, don't do it.

Hashes have the advantage that you can check if they are valid or not BEFORE performing any check to your database whether they exist or not. This can help you to fend off attacks with random hashes as you don't need to burden your database with fake lookups.
Therefor, if your hash has some kind of well-defined format with for example a checksum at the end, you can check if it's correct without needing to go to the database.

Related

SQL Database Design - Flag or New Table?

Some of the Users in my database will also be Practitioners.
This could be represented by either:
an is_practitioner flag in the User table
a separate Practitioner table with a user_id column
It isn't clear to me which approach is better.
Advantages of flag:
fewer tables
only one id per user (hence no possibility of confusion, and also no confusion in which id to use in other tables)
flexibility (I don't have to decide whether fields are Practitioner-only or not)
possible speed advantage for finding User-level information for a practitioner (e.g. e-mail address)
Advantages of new table:
no nulls in the User table
clearer as to what information pertains to practitioners only
speed advantage for finding practitioners
In my case specifically, at the moment, practitioner-related information is generally one-to-many (such as the locations they can work in, or the shifts they can work, etc). I would not be at all surprised if it turns I need to store simple attributes for practitioners (i.e., one-to-one).
Questions
Are there any other considerations?
Is either approach superior?
You might want to consider the fact that, someone who is a practitioner today, is something else tomorrow. (And, by that I don't mean, not being a practitioner). Say, a consultant, an author or whatever are the variants in your subject domain, and you might want to keep track of his latest status in the Users table. So it might make sense to have a ProfType field, (Type of Professional practice) or equivalent. This way, you have all the advantages of having a flag, you could keep it as a string field and leave it as a blank string, or fill it with other Prof.Type codes as your requirements grow.
You mention, having a new table, has the advantage for finding practitioners. No, you are better off with a WHERE clause on the users table for that.
Your last paragraph(one-to-many), however, may tilt the whole choice in favour of a separate table. You might also want to consider, likely number of records, likely growth, criticality of complicated queries etc.
I tried to draw two scenarios, with some notes inside the image. It's really only a draft just to help you to "see" the various entities. May be you already done something like it: in this case do not consider my answer please. As Whirl stated in his last paragraph, you should consider other things too.
Personally I would go for a separate table - as long as you can already identify some extra data that make sense only for a Practitioner (e.g.: full professional title, University, Hospital or any other Entity the Practitioner is associated with).
So in case in the future you discover more data that make sense only for the Practitioner and/or identify another distinct "subtype" of User (e.g. Intern) you can just add fields to the Practitioner subtable, or a new Table for the Intern.
It might be advantageous to use a User Type field as suggested by #Whirl Mind above.
I think that this is just one example of having to identify different type of Objects in your DB, and for that I refer to one of my previous answers here: Designing SQL database to represent OO class hierarchy

consistent hashing on Multiple machines

I've read the article: http://n00tc0d3r.blogspot.com/ about the idea for consistent hashing, but I'm confused about the method on multiple machines.
The basic process is:
Insert
Hash an input long url into a single integer;
Locate a server on the ring and store the key--longUrl on the server;
Compute the shorten url using base conversion (from 10-base to 62-base) and return it to the user.(How does this step work? In a single machine, there is a auto-increased id to calculate for shorten url, but what is the value to calculate for shorten url on multiple machines? There is no auto-increased id.)
Retrieve
Convert the shorten url back to the key using base conversion (from 62-base to 10-base);
Locate the server containing that key and return the longUrl. (And how can we locate the server containing the key?)
I don't see any clear answer on that page for how the author intended it. I think this is basically an exercise for the reader. Here's some ideas:
Implement it as described, with hash-table style collision resolution. That is, when creating the URL, if it already matches something, deal with that in some way. Rehashing or arithmetic transformation (eg, add 1) are both possibilities. This means, naively, a theoretical worst case of having to hit a server n times trying to find an available key.
There's a lot of ways to take that basic idea and smarten it, eg, just search for another available key on the same server, eg, by rehashing iteratively until you find one that's on the server.
Allow servers to talk to each other, and coordinate on the autoincrement id.
This is probably not a great solution, but it might work well in some situations: give each server (or set of servers) separate namespace, eg, the first 16 bits selects a server. On creation, randomly choose one. Then you just need to figure out how you want that namespace to map. The namespaces only really matter for who is allowed to create what IDs, so if you want to add nodes or rebalance later, it is no big deal.
Let me know if you want more elaboration. I think there's a lot of ways that this one could go. It is annoying that the author didn't elaborate on this point; my experience with these sorts of algorithms is that collision resolution and similar problems tend to be at the very heart of a practical implementation of a distributed system.

How do I generate a unique id from an auto incremented integer?

I have an auto incremented id (an int) that I want to convert in to something less "mine-able". Basically I don't want people to be able to access data/0, data/1, data/2, etc. and rip through our entire database. I was thinking of just hashing the ID but I wasn't sure if I could guarantee uniqueness.
Let's say the value range is from 1 to a couple hundred million. It may be that one of the hash algorithms can guarantee uniqueness within those parameters.
If not, what would be a good approach to take?
I did consider hashing and then appending the ID.
I'm trying to avoid using a GUID because it would require a lot of changes to existing code so I'd prefer to transform the data I have.
EDIT:
To further explain the situation - these are static resources that are being hit. I don't have to go to a database and reverse it or look it up against something else. Imagine a listing of products - a user might have a link to a specific page but I don't want them to be able to programatically go through every page so I need an non incrementing ID.
As far as I know hashing is intended to create unique ID based on some concrete data (e.g. name, surname etc.). Hashing auto incremented ID wont help you much. If someone searches through your database by entering an auto incremented ID, that ID will be passed to hash function as parameter and he will still get the data he wants. So I think that better solution would be to hash some other data in order to get a unique ID. If you do so then a person who searches through you database would have to know exact data that is stored in there (e.g. He would have to know exact name of you employee, or his SSN).
Hope that helps!
Use something pseudo-random to salt the value before hashing if there is no need for reverse lookup.

How can I implement incr/decr on top of a key/value store?

How can I implement incr/decr on top of a key/value store?
I'm using a key value store that doesn't support incr and decr though which is why I want to create this. I have used Redis and Memcached incr and decr, so as mentioned in some of the answers then this is a perfect example of how I want the incr and decr to behave, so thanks to those who mentioned this.
The point of having a incr() function is it's all internal to the store. You don't have to pull data out and push it back in.
What you're doing sounds like you want to put some logic in your code that pulls the data out, increments it and pushes it back in... While it's not very hard (I think I've just described how you'd do it), it does defeat the point somewhat.
To get the benefit you'd need to change the source of your key store. Might be easy.
But a lot of caches already have this. If you really need this for speed, perhaps you should find an alternate store like memcached that does support it.
Memcache has this functionality built in
edit: it looks like you're not going to get an atomic update without updating the source, as there doesn't appear to be a lock function. If there is (and this is not pretty), you can lock the value, get it, increment it in your application, put it, and unlock it. Suboptimal though.
it kind of seems like without a compareAndSet then you are out of luck. But it will help to consider the problem from another angle. For example, if you were implementing an atomic counter that shows the number of upvotes for a question, then one way would be to have a "table" per question and to put a +1 for each upvote and -1 for each downvote. Then to "get" you would sum the "table". For this to work I assume "tables" are inexpensive and you don't care how long "get" takes to compute, you only mentioned incr/decr.
If you wish to atomically increment or decrement an int value associated with a key of e.g. type string, and if you'll know all of the keys in advance of having to perform the atomic operations on any of them, use Dictionary<string, int[]> and pre-populate the dictionary with a single-item array for each key value. It will then be possible to perform atomic operations (e.g. increment) on items via code like Threading.Interlocked.Increment(MyDict[keyString][0]);. If you need to be able to deal with keys that are not known in advance, you may need to use a ConcurrentDictionary instead of Dictionary, but you need to be careful if two threads try to simultaneously create dictionary entries for the same key.
Since increment and decrement are simple addition and subtraction operations that are "commutative", what you need to implement is a PN-Counter. It is a CRDT (commutative replicated data type). Various examples of how to implement this on Riak are available around the web and on Github.

Encrypting SQLite Database file in iPhone OS

Any SQLite database on the iPhone is simply a file bundled with the application. It is relatively simple for anyone to extract this file and query it.
What are your suggestions for encrypting either the file or the data stored within the database.
Edit: The App is a game that will be played against other users. Information about a users relative strengths and weaknesses will be stored in the DB. I don't want a user to be able to jail-break the phone up their reputation/power etc then win the tournament/league etc (NB: Trying to be vague as the idea is under NDA).
I don't need military encryption, I just don't want to store things in plain text.
Edit 2: A little more clarification, my main goals are
Make it non-trivial to hack sensitive data
Have a simple way to discover if data has been altered (some kind of checksum)
You cannot trust the client, period. If your standalone app can decrypt it, so will they. Either put the data on a server or don't bother, as the number of people who actually crack it to enhance stats will be minuscule, and they should probably be rewarded for the effort anyway!
Put a string in the database saying "please don't cheat".
There are at least two easier approaches here (both complimentary) that avoid encrypting values or in-memory databases:
#1 - ipa crack detection
Avoid the technical (and legal) hassle of encrypting the database and/or the contents and just determine if the app is pirated and disable the network/scoring/ranking aspects of the game. See the following for more details:
http://thwart-ipa-cracks.blogspot.com/2008/11/detection.html
#2 - data integrity verification
Alternatively store a HMAC/salted hash of the important columns in each row when saving your data (and in your initial sqlite db). When loading each row, verify the data against the HMAC/hash and if verification fails act accordingly.
Neither approach will force you to fill out the encryption export forms required by Apple/US government.
Score submission
Don't forget you'll need to do something similar for the actual score submissions to protect against values coming from something other than your app. You can see an implementation of this in the cocos2d-iphone and cocoslive frameworks at http://code.google.com/p/cocos2d-iphone/ and http://code.google.com/p/cocoslive/
Response to comments
There is no solution here that will 100% prevent data tampering. If that is a requirement, the client needs to be view only and all state and logic must be calculated on a trusted server. Depending on the application, extra anti-cheat mechanisms will be required on the client.
There are a number of books on developing massively-multiplayer games that discuss these issues.
Having a hash with a known secret in the code is likely a reasonable approach (at least, when considering the type of applications that generally exist on the App Store).
Like Kendall said, including the key on the device is basically asking to get cracked. However, there are folks who have their reasons for obfuscating data with a key on-device. If you're determined to do it, you might consider using SQLCipher for your implementation. It's a build of SQLite that provides transparent, page-level encryption of the entire DB. There's a tutorial over on Mobile Orchard for using it in iPhone apps.
How likely do you think it is that your normal user will be doing this? I assume you're going through the app store, which means that everything is signed/encrypted before getting on to the user's device. They would have to jailbreak their device to get access to your database.
What sort of data are you storing such that it needs encryption? If it contains passwords that the user entered, then you don't really need to encrypt them; the user will not need to find out their own password. If it's generic BLOB data that you only want the user to access through the application, it could be as simple as storing an encrypted blob using the security API.
If it's the whole database you want secured, then you'd still want to use the security api, but on the whole file instead, and decrypt the file as necessary before opening it. The issue here is that if the application closes without cleanup, you're left with a decrypted file.
You may want to take a look at memory-resident databases, or temporary databases which you can create either using a template db or a hard-coded schema in the program (take a look at the documentation for sqlite3_open). The data could be decrypted, inserted into the temporary database, then delete the decrypted database. Do it in the opposite direction when closing the connection.
Edit:
You can cook up your own encryption scheme I'm sure with just a very simple security system by XOR-ing the data with a value stored in the app, and store a hash somewhere else to make sure it doesn't change, or something.
SQLCipher:
Based on my experience SQLCipher is the best option to encrypt the data base.
Once the key("PRAGMA key") is set SQLCipher will automatically encrypt all data in the database! Note that if you don't set a key then SQLCipher will operate identically to a standard SQLite database.
The call to sqlite3_key or "PRAGMA key" should occur as the first operation after opening the database. In most cases SQLCipher uses PBKDF2, a salted and iterated key derivation function, to obtain the encryption key. Alternately, an application can tell SQLCipher to use a specific binary key in blob notation (note that SQLCipher requires exactly 256 bits of key material), i.e.
Reference:
http://sqlcipher.net/ios-tutorial
I hope someone would save time on exploring about this
Ignoring the philosophical and export issues, I'd suggest that you'd be better off encrypting the data in the table directly.
You need to obfuscate the decryption key(s) in your code. Typically, this means breaking them into pieces and encoding the strings in hex and using functions to assemble the pieces of the key together.
For the algorithm, I'd use a trusted implementation of AES for whatever language you're using.
Maybe this one for C#:
http://msdn.microsoft.com/en-us/magazine/cc164055.aspx
Finally, you need to be aware of the limitations of the approach. Namely, the decryption key is a weak link, it will be available in memory at run-time in clear text. (At a minimum) It has to be so that you can use it. The implementation of your encryption scheme is another weakness--any flaws there are flaws in your code too. As several other people have pointed out your client-server communications are suspect too.
You should remember that your executable can be examined in a hex editor where cleartext strings will leap out of the random junk that is your compiled code. And that many languages (like C# for example) can be reverse-compiled and all that will be missing are the comments.
All that said, encrypting your data will raise the bar for cheating a bit. How much depends on how careful you are; but even so a determined adversary will still break your encryption and cheat. Furthermore, they will probably write a tool to make it easy if your game is popular; leaving you with an arms-race scenario at that point.
Regarding a checksum value, you can compute a checksum based on the sum of the values in a row assuming that you have enough numeric values in your database to do so. Or, for an bunch of boolean values you can store them in a varbinary field and use the bitwise exclusive operator ^ to compare them--you should end up with 0s.
For example,
for numeric columns,
2|3|5|7| with a checksum column | 17 |
for booleans,
0|1|0|1| with a checksum column | 0101 |
If you do this, you can even add a summary row at the end that sums your checksums. Although this can be problematic if you are constantly adding new records. You can also convert strings to their ANSI/UNICODE components and sum these too.
Then when you want to check the checksum simple do a select like so:
Select *
FROM OrigTable
right outer join
(select pk, (col1 + col2 + col3) as OnTheFlyChecksum, PreComputedChecksum from OrigTable) OT on OrigTable.pk = OT.pk
where OT.OnTheFlyChecksum = OT.PreComputedChecksum
It appears to be simplest to sync all tournament results to all iPhones in the tournament. You can do it during every game: before a game, if the databases of two phones contradict each other, the warning is shown.
If the User A falsifies the result if his game with User B, this result will propagate until B eventually sees it with the warning that A's data don't match with his phone. He then can go and beat up explain to A that his behavior isn't right, just the way it is in real life if somebody cheats.
When you compute the final tournament results, show the warning, name names, and throw out all games with contradictory results. This takes away the incentive to cheat.
As said before, encryption won't solve the problem since you can't trust the client. Even if your average person can't use disassembler, all it takes is one motivated person and whatever encryption you have will be broken.
Yet, if on windows platform, you also can select SQLiteEncrypt to satisfy your needs.SQLiteEncrypt extends sqlite encryption support, but you can treat it as original sqlite3 c library.