I want to create a class that takes string array as a constructor argument and has command line option values as members vals. Something like below, but I don't understand how the Bistate works.
import scalax.data._
import scalax.io.CommandLineParser
class TestCLI(arguments: Array[String]) extends CommandLineParser {
private val opt1Option = new Flag("p", "print") with AllowAll
private val opt2Option = new Flag("o", "out") with AllowAll
private val strOption = new StringOption("v", "value") with AllowAll
private val result = parse(arguments)
// true or false
val opt1 = result(opt1Option)
val opt2 = result(opt2Option)
val str = result(strOption)
}
Here are shorter alternatives to that pattern matching to get a boolean:
val opt1 = result(opt1Option).isInstanceOf[Positive[_]]
val opt2 = result(opt2Option).posValue.isDefined
The second one is probably better. The field posValue is an Option (there's negValue as well). The method isDefined from Option tells you whether it is a Some(x) or None.
I'm not personally familiar with Scalax or Bistate in particular, but just looking at the scaladocs, it looks like a left-right disjunction. Scala's main library has a monad very much like this (Either), so I'm surprised that they didn't just use the standard one.
In essence, Bistate and Either are a bit like Option, except their "None-equivalent" can contain a value. For example, if I were writing code using Either, I might do something like this:
def div(a: Int, b: Int) = if (b != 0) Left(a / b) else Right("Divide by zero")
div(4, 2) match {
case Left(x) => println("Result: " + x)
case Right(e) => Println("Error: " + e)
}
This would print "Result: 2". In this case, we're using Either to simulate an exception. We return an instance of Left which contains the value we want, unless that value cannot be computed for some reason, in which case we return an error message wrapped up inside an instance of Right.
So if I want to assign to variable boolean value of whether flag is found I have to do like below?
val opt1 = result(opt1Option) match {
case Positive(_) => true
case Negative(_) => false
}
Isn't there a way to write this common case with less code than that?
Related
Is it possible to run multiple extractors in one match statement?
object CoolStuff {
def unapply(thing: Thing): Option[SomeInfo] = ...
}
object NeatStuff {
def unapply(thing: Thing): Option[OtherInfo] = ...
}
// is there some syntax similar to this?
thing match {
case t # CoolStuff(someInfo) # NeatStuff(otherInfo) => process(someInfo, otherInfo)
case _ => // neither Cool nor Neat
}
The intent here being that there are two extractors, and I don't have to do something like this:
object CoolNeatStuff {
def unapply(thing: Thing): Option[(SomeInfo, OtherInfo)] = thing match {
case CoolStuff(someInfo) => thing match {
case NeatStuff(otherInfo) => Some(someInfo -> otherInfo)
case _ => None // Cool, but not Neat
case _ => None// neither Cool nor Neat
}
}
Can try
object ~ {
def unapply[T](that: T): Option[(T,T)] = Some(that -> that)
}
def too(t: Thing) = t match {
case CoolStuff(a) ~ NeatStuff(b) => ???
}
I've come up with a very similar solution, but I was a bit too slow, so I didn't post it as an answer. However, since #userunknown asks to explain how it works, I'll dump my similar code here anyway, and add a few comments. Maybe someone finds it a valuable addition to cchantep's minimalistic solution (it looks... calligraphic? for some reason, in a good sense).
So, here is my similar, aesthetically less pleasing proposal:
object && {
def unapply[A](a: A) = Some((a, a))
}
// added some definitions to make your question-code work
type Thing = String
type SomeInfo = String
type OtherInfo = String
object CoolStuff {
def unapply(thing: Thing): Option[SomeInfo] = Some(thing.toLowerCase)
}
object NeatStuff {
def unapply(thing: Thing): Option[OtherInfo] = Some(thing.toUpperCase)
}
def process(a: SomeInfo, b: OtherInfo) = s"[$a, $b]"
val res = "helloworld" match {
case CoolStuff(someInfo) && NeatStuff(otherInfo) =>
process(someInfo, otherInfo)
case _ =>
}
println(res)
This prints
[helloworld, HELLOWORLD]
The idea is that identifiers (in particular, && and ~ in cchantep's code) can be used as infix operators in patterns. Therefore, the match-case
case CoolStuff(someInfo) && NeatStuff(otherInfo) =>
will be desugared into
case &&(CoolStuff(someInfo), NeatStuff(otherInfo)) =>
and then the unapply method method of && will be invoked which simply duplicates its input.
In my code, the duplication is achieved by a straightforward Some((a, a)). In cchantep's code, it is done with fewer parentheses: Some(t -> t). The arrow -> comes from ArrowAssoc, which in turn is provided as an implicit conversion in Predef. This is just a quick way to create pairs, usually used in maps:
Map("hello" -> 42, "world" -> 58)
Another remark: notice that && can be used multiple times:
case Foo(a) && Bar(b) && Baz(c) => ...
So... I don't know whether it's an answer or an extended comment to cchantep's answer, but maybe someone finds it useful.
For those who might miss the details on how this magic actually works, just want to expand the answer by #cchantep anf #Andrey Tyukin (comment section does not allow me to do that).
Running scalac with -Xprint:parser option will give something along those lines (scalac 2.11.12)
def too(t: String) = t match {
case $tilde(CoolStuff((a # _)), NeatStuff((b # _))) => $qmark$qmark$qmark
}
This basically shows you the initial steps compiler does while parsing source into AST.
Important Note here is that the rules why compiler makes this transformation are described in Infix Operation Patterns and Extractor Patterns. In particular, this allows you to use any object as long as it has unapply method, like for example CoolStuff(a) AndAlso NeatStuff(b). In previous answers && and ~ were picked up as also possible but not the only available valid identifiers.
If running scalac with option -Xprint:patmat which is a special phase for translating pattern matching one can see something similar to this
def too(t: String): Nothing = {
case <synthetic> val x1: String = t;
case9(){
<synthetic> val o13: Option[(String, String)] = main.this.~.unapply[String](x1);
if (o13.isEmpty.unary_!)
{
<synthetic> val p3: String = o13.get._1;
<synthetic> val p4: String = o13.get._2;
{
<synthetic> val o12: Option[String] = main.this.CoolStuff.unapply(p3);
if (o12.isEmpty.unary_!)
{
<synthetic> val o11: Option[String] = main.this.NeatStuff.unapply(p4);
if (o11.isEmpty.unary_!)
matchEnd8(scala.this.Predef.???)
Here ~.unapply will be called on input parameter t which will produce Some((t,t)). The tuple values will be extracted into variables p3 and p4. Then, CoolStuff.unapply(p3) will be called and if the result is not None NeatStuff.unapply(p4) will be called and also checked if it is not empty. If both are not empty then according to Variable Patterns a and b will be bound to returned results inside corresponding Some.
I would like to passing a parameter via String and construct a Set of class objects, like this:
def getTypes(value: String) : Set[Class[Base]] = {
var set = Set[Class[Base]]()
var input = value.split(",")
if(input.contains("XXX"))
set ++ Class[xxx]
if(input.contains("YYY"))
set ++ Class[yyy]
if(input.contains("ZZZ"))
set ++ Class[zzz]
set
}
Then looping the set and use class.newInstance() to create the actual object to do something later. The able code can compile, but when it run, it complaint that
Error:(32, 16) object java.lang.Class is not a value
set ++ Class[xxx]
Any clue about about that?
There are two problems in your snippet. One, as aravindKrishna pointed, is you're trying to get Class literals improperly.
The other one is, you're treating your immutable Set like you would a mutable one. Remember you can't mutate the object itself - every operation returns a new one - so you should either reassign the variable every time (and using vars is discouraged for functional code), or use recursion, or construct the entire set in one go.
Here's an example of how to construct the set in one go:
def getTypes(value: String): Set[Class[_ <: Base]] = {
val mapping = Map(
"XXX", classOf[xxx],
"YYY", classOf[yyy],
"ZZZ", classOf[zzz])
val input = value.split(",").toSet
mapping.collect {
case (k, v) if input contains k => v
}.toSet
}
Or, translating your original code snippet more literally,
def getTypes(value: String): Set[Class[_ <: Base]] = {
val input = value.split(",").toSet
Set[Class[_ <: Base]]() ++
input.find("XXX" ==).map(_ => classOf[xxx]) ++
input.find("YYY" ==).map(_ => classOf[yyy]) ++
input.find("ZZZ" ==).map(_ => classOf[zzz])
}
Here is an idiom I find myself writing.
def chooseName(nameFinder: NameFinder) = {
if(nameFinder.getReliableName.isEmpty) nameFinder.getReliableName
else nameFinder.secondBestChoice
}
In order to avoid calling getReliableName() twice on nameFinder, I add code that makes my method look less elegant.
def chooseName(nameFinder: NameFinder) = {
val reliableName = nameFinder.getReliableName()
val secondBestChoice = nameFinder.getSecondBestChoice()
if(reliableName.isEmpty) reliableName
else secondBestChoice
}
This feels dirty because I am creating an unnecessary amount of state using the vals for no reason other than to prevent a duplicate method call. Scala has taught me that whenever I feel dirty there is almost always a better way.
Is there a more elegant way to write this?
Here's two Strings, return whichever isn't empty while favoring the first
There's no need to always call getSecondBestChoice, of course. Personally, I find nothing inelegant about the code after changing that - it's clear what it does, has no mutable state. The other answers just seem overcomplicated just to avoid using a val
def chooseName(nameFinder: NameFinder) = {
val reliableName = nameFinder.getReliableName()
if(reliableName.isEmpty) reliableName
else nameFinder.getSecondBestChoice()
}
If you really want to avoid the val, here's another variant (generalises well if there are more than two alternatives)
List(nameFinder.getReliableName(), nameFinder.getSecondBestChoice()).find(_.nonEmpty).get
(or getOrElse(lastResort) if everything in the list may be empty too)
Here's a way using Option. It's not that much prettier, but everything is called only once. This assumes you want a String as a result, and don't care if the second string is empty.
Some(nameFinder.getReliableName)
.filter(_.nonEmpty)
.getOrElse(nameFinder.secondBestChoice)
Option(namefinder.getReliableName) // transforms a potential null into None
.filter(_.trim.nonEmpty) // "" is None, but also " "
.getOrElse(nameFinder.secondBestChoice)
Or better, if you can modify getReliableName to return an Option[String]:
def chooseName(nameFinder: NameFinder): String =
namefinder.getReliableName getOrElse nameFinder.secondBestChoice
Finally, if secondBestChoice can fail as well (assuming it returns an Option[String]):
def chooseName(nameFinder: NameFinder): Option[String] =
namefinder.getReliableName orElse nameFinder.secondBestChoice
If you need it more than once:
scala> implicit class `nonempty or else`(val s: String) extends AnyVal {
| def nonEmptyOrElse(other: => String) = if (s.isEmpty) other else s }
defined class nonempty
scala> "abc" nonEmptyOrElse "def"
res2: String = abc
scala> "" nonEmptyOrElse "def"
res3: String = def
Using the following pattern matching may deliver a neater scalish code,
def chooseName(nameFinder: NameFinder) = {
nameFinder.getReliableName match {
case r if r.isEmpty => r
case _ => nameFinder.secondBestChoice
}
}
I found myself writing something like this quite often:
a match {
case `b` => // do stuff
case _ => // do nothing
}
Is there a shorter way to check if some value matches a pattern? I mean, in this case I could just write if (a == b) // do stuff, but what if the pattern is more complex? Like when matching against a list or any pattern of arbitrary complexity. I'd like to be able to write something like this:
if (a matches b) // do stuff
I'm relatively new to Scala, so please pardon, if I'm missing something big :)
This is exactly why I wrote these functions, which are apparently impressively obscure since nobody has mentioned them.
scala> import PartialFunction._
import PartialFunction._
scala> cond("abc") { case "def" => true }
res0: Boolean = false
scala> condOpt("abc") { case x if x.length == 3 => x + x }
res1: Option[java.lang.String] = Some(abcabc)
scala> condOpt("abc") { case x if x.length == 4 => x + x }
res2: Option[java.lang.String] = None
The match operator in Scala is most powerful when used in functional style. This means, rather than "doing something" in the case statements, you would return a useful value. Here is an example for an imperative style:
var value:Int = 23
val command:String = ... // we get this from somewhere
command match {
case "duplicate" => value = value * 2
case "negate" => value = -value
case "increment" => value = value + 1
// etc.
case _ => // do nothing
}
println("Result: " + value)
It is very understandable that the "do nothing" above hurts a little, because it seems superflous. However, this is due to the fact that the above is written in imperative style. While constructs like these may sometimes be necessary, in many cases you can refactor your code to functional style:
val value:Int = 23
val command:String = ... // we get this from somewhere
val result:Int = command match {
case "duplicate" => value * 2
case "negate" => -value
case "increment" => value + 1
// etc.
case _ => value
}
println("Result: " + result)
In this case, you use the whole match statement as a value that you can, for example, assign to a variable. And it is also much more obvious that the match statement must return a value in any case; if the last case would be missing, the compiler could not just make something up.
It is a question of taste, but some developers consider this style to be more transparent and easier to handle in more real-world examples. I would bet that the inventors of the Scala programming language had a more functional use in mind for match, and indeed the if statement makes more sense if you only need to decide whether or not a certain action needs to be taken. (On the other hand, you can also use if in the functional way, because it also has a return value...)
This might help:
class Matches(m: Any) {
def matches[R](f: PartialFunction[Any, R]) { if (f.isDefinedAt(m)) f(m) }
}
implicit def any2matches(m: Any) = new Matches(m)
scala> 'c' matches { case x: Int => println("Int") }
scala> 2 matches { case x: Int => println("Int") }
Int
Now, some explanation on the general nature of the problem.
Where may a match happen?
There are three places where pattern matching might happen: val, case and for. The rules for them are:
// throws an exception if it fails
val pattern = value
// filters for pattern, but pattern cannot be "identifier: Type",
// though that can be replaced by "id1 # (id2: Type)" for the same effect
for (pattern <- object providing map/flatMap/filter/withFilter/foreach) ...
// throws an exception if none of the cases match
value match { case ... => ... }
There is, however, another situation where case might appear, which is function and partial function literals. For example:
val f: Any => Unit = { case i: Int => println(i) }
val pf: PartialFunction[Any, Unit] = { case i: Int => println(i) }
Both functions and partial functions will throw an exception if called with an argument that doesn't match any of the case statements. However, partial functions also provide a method called isDefinedAt which can test whether a match can be made or not, as well as a method called lift, which will turn a PartialFunction[T, R] into a Function[T, Option[R]], which means non-matching values will result in None instead of throwing an exception.
What is a match?
A match is a combination of many different tests:
// assign anything to x
case x
// only accepts values of type X
case x: X
// only accepts values matches by pattern
case x # pattern
// only accepts a value equal to the value X (upper case here makes a difference)
case X
// only accepts a value equal to the value of x
case `x`
// only accept a tuple of the same arity
case (x, y, ..., z)
// only accepts if extractor(value) returns true of Some(Seq()) (some empty sequence)
case extractor()
// only accepts if extractor(value) returns Some something
case extractor(x)
// only accepts if extractor(value) returns Some Seq or Tuple of the same arity
case extractor(x, y, ..., z)
// only accepts if extractor(value) returns Some Tuple2 or Some Seq with arity 2
case x extractor y
// accepts if any of the patterns is accepted (patterns may not contain assignable identifiers)
case x | y | ... | z
Now, extractors are the methods unapply or unapplySeq, the first returning Boolean or Option[T], and the second returning Option[Seq[T]], where None means no match is made, and Some(result) will try to match result as described above.
So there are all kinds of syntactic alternatives here, which just aren't possible without the use of one of the three constructions where pattern matches may happen. You may able to emulate some of the features, like value equality and extractors, but not all of them.
Patterns can also be used in for expressions. Your code sample
a match {
case b => // do stuff
case _ => // do nothing
}
can then be expressed as
for(b <- Some(a)) //do stuff
The trick is to wrap a to make it a valid enumerator. E.g. List(a) would also work, but I think Some(a) is closest to your intended meaning.
The best I can come up with is this:
def matches[A](a:A)(f:PartialFunction[A, Unit]) = f.isDefinedAt(a)
if (matches(a){case ... =>}) {
//do stuff
}
This won't win you any style points though.
Kim's answer can be “improved” to better match your requirement:
class AnyWrapper[A](wrapped: A) {
def matches(f: PartialFunction[A, Unit]) = f.isDefinedAt(wrapped)
}
implicit def any2wrapper[A](wrapped: A) = new AnyWrapper(wrapped)
then:
val a = "a" :: Nil
if (a matches { case "a" :: Nil => }) {
println("match")
}
I wouldn't do it, however. The => }) { sequence is really ugly here, and the whole code looks much less clear than a normal match. Plus, you get the compile-time overhead of looking up the implicit conversion, and the run-time overhead of wrapping the match in a PartialFunction (not counting the conflicts you could get with other, already defined matches methods, like the one in String).
To look a little bit better (and be less verbose), you could add this def to AnyWrapper:
def ifMatch(f: PartialFunction[A, Unit]): Unit = if (f.isDefinedAt(wrapped)) f(wrapped)
and use it like this:
a ifMatch { case "a" :: Nil => println("match") }
which saves you your case _ => line, but requires double braces if you want a block instead of a single statement... Not so nice.
Note that this construct is not really in the spirit of functional programming, as it can only be used to execute something that has side effects. We can't easily use it to return a value (therefore the Unit return value), as the function is partial — we'd need a default value, or we could return an Option instance. But here again, we would probably unwrap it with a match, so we'd gain nothing.
Frankly, you're better off getting used to seeing and using those match frequently, and moving away from this kind of imperative-style constructs (following Madoc's nice explanation).
Basically, I would like to be able to build a custom extractor without having to store it in a variable prior to using it.
This isn't a real example of how I would use it, it would more likely be used in the case of a regular expression or some other string pattern like construct, but hopefully it explains what I'm looking for:
def someExtractorBuilder(arg:Boolean) = new {
def unapply(s:String):Option[String] = if(arg) Some(s) else None
}
//I would like to be able to use something like this
val {someExtractorBuilder(true)}(result) = "test"
"test" match {case {someExtractorBuilder(true)}(result) => result }
//instead I would have to do this:
val customExtractor = someExtractorBuilder(true)
val customExtractor(result) = "test"
"test" match {case customExtractor(result) => result}
When just doing a single custom extractor it doesn't make much difference, but if you were building a large list of extractors for a case statement, it could make things more difficult to read by separating all of the extractors from their usage.
I expect that the answer is no you can't do this, but I thought I'd ask around first :D
Parameterising extractors would be cool, but we don't have the resources to implement them right now.
Nope.
8.1.7 Extractor Patterns
An extractor pattern x (p 1 , . . . ,
p n ) where n ≥ 0 is of the same
syntactic form as a constructor
pattern. However, instead of a case
class, the stable identifier x denotes
an object which has a member method
named unapply or unapplySeq that
matches the pattern.
One can customize extractors to certain extent using implicit parameters, like this:
object SomeExtractorBuilder {
def unapply(s: String)(implicit arg: Boolean): Option[String] = if (arg) Some(s) else None
}
implicit val arg: Boolean = true
"x" match {
case SomeExtractorBuilder(result) =>
result
}
Unfortunately this cannot be used when you want to use different variants in one match, as all case statements are in the same scope. Still, it can be useful sometimes.
Late but there is a scalac plugin in one of my lib providing syntax ~(extractorWith(param), bindings):
x match {
case ~(parametrizedExtractor(param)) =>
"no binding"
case ~(parametrizedExtractor(param), (a, b)) =>
s"extracted bindings: $a, $b"
}
https://github.com/cchantep/acolyte/blob/master/scalac-plugin/readme.md
Though what you are asking isn't directly possible,
it is possible to create an extractor returning a contaner that gets evaluated value in the if-part of the case evaluation. In the if part it is possible to provide parameters.
object DateExtractor {
def unapply(in: String): Option[DateExtractor] = Some(new DateExtractor(in));
}
class DateExtractor(input:String){
var value:LocalDate=null;
def apply():LocalDate = value;
def apply(format: String):Boolean={
val formater=DateTimeFormatter.ofPattern(format);
try{
val parsed=formater.parse(input, TemporalQueries.localDate());
value=parsed
true;
} catch {
case e:Throwable=>{
false
}
}
}
}
Usage:
object DateExtractorUsage{
def main(args: Array[String]): Unit = {
"2009-12-31" match {
case DateExtractor(ext) if(ext("dd-MM-yyyy"))=>{
println("Found dd-MM-yyyy date:"+ext())
}
case DateExtractor(ext) if(ext("yyyy-MM-dd"))=>{
println("Found yyyy-MM-dd date:"+ext())
}
case _=>{
println("Unable to parse date")
}
}
}
}
This pattern preserves the PartialFunction nature of the piece of code. I find this useful since I am quite a fan of the collect/collectFirst methods, which take a partial function as a parameter and typically does not leave room for precreating a set of extractors.