How can I render reflections in OpenGL ES on the iPhone without a stencil buffer? - iphone

I'm looking for an alternative technique for rendering reflections in OpenGL ES on the iPhone. Usually I would do this by using the stencil buffer to mark where the reflection can be seen (the reflective surface) and then render the reversed image only in those pixels. Thus when the reflected object moves off the surface its reflection is no longer seen. However, since the iPhone's implementation doesn't support the stencil buffer I can't determine how to hide the portions of the reflection that fall outside of the surface.
To clarify, the issue isn't rendering the reflections themselves, but hiding them when they wouldn't be visible.
Any ideas?

Render the reflected scene first; copy out to a texture using glCopyTexImage2D; clear the framebuffer; draw the scene proper, applying the copied texture to the reflective surface.

I don't have an answer for reflections, but here's how I'm doing shadows without the stencil buffer, perhaps it will give you an idea:
I perform basic front-face/back-face determination of the mesh from the point of view of the light source. I then get a list of all edges that connect a front triangle to a back triangle. I treat this edge list as a line "loop". I project the vertices of this loop along the object-light ray until it intersects the ground. These intersection points are then used to calculate a 2D polygon on the same plane as the ground. I then use a tesselation algorithm to turn that poly into triangles. (This works fine as long as your lights sources or objects don't move too often.)
Once I have the triangles, I render them with a slight offset such that the depth buffer will allow the shadow to pass. Alternatively you can use a decaling algorithm such as the one in the Red Book.

Related

ARKit use Lidar mesh to smooth estimated planes

I'm trying to use ARKit's mesh scene reconstruction (with lidar) data to improve detected plane/geometry detection.
Right now, when pointing to a surface, ARKit gives me a very rough rectangle (far from actual surface's dimension). It happens almost instantly, but still far from the actual shape.
I'm trying to use this plane info, hit detection, and mesh data, to actually draw a smoothed rectangle around the detected surface. I don't expect full code, but rather just some hints of what to do.
Note: I'm using SceneKit (not RealityKit).
This is what I have so far for visualization:
Basically, I want the blue rectangle to better adjust to the real world shape by using the already available mesh data.
instead of using plane extents, use anchor.geometry

How to texture mesh? Shader vs. generated texture

I managed to create a map divided in chunks. Each one holding a mesh generated by using perlin noise and so on. The basic procedural map method, shown in multiple tutorials.
At this point i took a look at surface shader and managed to write one which fades multiple textures depending on the vertex heights.
This gives me a map which is colored smoothly.
In tutorials i watched they seem to use different methods to texture a mesh. So in this one for example a texture is generated for each mesh. This texture will hold a different color depending on the noise value.This texture is applied to the mesh and after that the mesh vertices are displaced depending on the z-value.
This results in a map with sharper borders between the colors giving the whole thing a different look. I believe there is a way to create smoother transitions between the tile-colors by fading them like i do in my shader.
My question is simply what are the pro and cons of those methods. Let's call them "shader" and "texture map". I am lost right now, not knowing in which direction to go.

Shader-coding: nonlinear projection models

As I understand it, the standard projection model places an imaginary grid in front of the camera, and for each triangle in the scene, determines which 3 pixels its 3 corners project onto. The color is determined for each of these points, and the fragment shader fills in the rest using interpolation.
My question is this: is it possible to gain control over this projection model? For example, create my own custom distorted uv-grid? Or even just supply my own algorithm:
xyPixelPos_for_Vector3( Vector3 v ) {...}
I'm working in Unity3D, so I think that limits me to cG or openGL.
I did once write a GLES2 shader, but I don't remember ever performing any kind of "ray hits quad" type test to resolve the pixel position of a particular 3D point in space.
I'm going to assume that you want to render 3d images based upon 3d primitives that are defined by vertices. This is not the only way to render images with OpenGL but it is the most common. The technique that you describe sounds much more like Ray-Tracing.
How OpenGL Typically Works:
I wouldn't say that OpenGL creates an imaginary grid. Instead, what it does is take the positions of each of your vertices, and converts them into a different space using linear algebra (Matrices).
If you want to start playing around with this, it would be best to do some reading on Matrices, to understand what the graphics card is doing.
You can easily start warping the positions of Vertices by making a vertex shader. However, there is some setup involved. See the Lighthouse tutorials (http://www.lighthouse3d.com/tutorials/glsl-tutorial/hello-world-in-glsl/) to get started with that! You will also want to read their tutorials on lighting (http://www.lighthouse3d.com/tutorials/glsl-tutorial/lighting/), to create a fully functioning vertex shader which includes a lighting model.
Thankfully, once the shader is set up, you can distort your entire scene to your hearts content. Just remember to do your distortions in the right 'space'. World coordinates are much different than eye coordinates!

OpenGL: optimizing render of quad particles

I'm rendering particles in a 2D game. Each particle is a quad (2 triangles). How can I make the drawing the fastest possible? All the particles has the same texture, I'm only changing it's positions.
Now I'm using a call to glVertexPointer and glDrawArrays for each particle. So I'm sending 4 vertices each time to the GPU.
Is there any other approach that could be faster?
I'm using OpenGL ES 1.1 (iPhone)
Thanks!
Every draw call you make (glDrawArrays) is expensive. Doing this once per particle is DEFINITELY way too often. All your particles can be drawn with a single draw call; just set up a big array of all the triangle verts and another big array with the texture coords, and call glVertexPointer/glDrawArrays once-- that's the power of glVertexPointer: arbitrary geometry of the same type in one call. :)
For what you're doing, you should also look into point sprites (GL_POINTS), which also function as tiny textured quads. They're 2D only, so you can't map your texture into the Z axis, but if your particles are just 2D quads of the same texture over and over, point sprites will likely do exactly what you want.
There's a way to do that all in one draw routine. I THINK it's by adding an extra vertex after each quad, which is the same as the previous vertex, but I could be wrong.
EDIT: After looking into it a bit, it looks like you need two in between; essentially one after, and one before. It does add up to quite a few extra vertexes, but I know from experience that it makes a HUGE positive difference on the iPhone to do it all in one draw operation (we were drawing text from a texture, so essentially the same thing).
EDIT2: Also note, I'm referring to using GL_TRIANGLE_STRIP - if you were using GL_TRIANGLES instead, you wouldn't need the extra vertices... except, then you'd be doing the same amount extra anyway, due to repeating 2 for each second triangle.

Screen-to-World coordinate conversion in OpenGLES an easy task?

The Screen-to-world problem on the iPhone
I have a 3D model (CUBE) rendered in an EAGLView and I want to be able to detect when I am touching the center of a given face (From any orientation angle) of the cube. Sounds pretty easy but it is not...
The problem:
How do I accurately relate screen-coordinates (touch point) to world-coordinates (a location in OpenGL 3D space)? Sure, converting a given point into a 'percentage' of the screen/world-axis might seem the logical fix, but problems would arise when I need to zoom or rotate the 3D space. Note: rotating & zooming in and out of the 3D space will change the relationship of the 2D screen coords with the 3D world coords...Also, you'd have to allow for 'distance' in between the viewpoint and objects in 3D space. At first, this might seem like an 'easy task', but that changes when you actually examine the requirements. And I've found no examples of people doing this on the iPhone. How is this normally done?
An 'easy' task?:
Sure, one might undertake the task of writing an API to act as a go-between between screen and world, but the task of creating such a framework would require some serious design and would likely take 'time' to do -- NOT something that can be one-manned in 4 hours...And 4 hours happens to be my deadline.
The question:
What are some of the simplest ways to
know if I touched specific locations
in 3D space in the iPhone OpenGL ES
world?
You can now find gluUnProject in http://code.google.com/p/iphone-glu/. I've no association with the iphone-glu project and haven't tried it yet myself, just wanted to share the link.
How would you use such a function? This PDF mentions that:
The Utility Library routine gluUnProject() performs this reversal of the transformations. Given the three-dimensional window coordinates for a location and all the transformations that affected them, gluUnProject() returns the world coordinates from where it originated.
int gluUnProject(GLdouble winx, GLdouble winy, GLdouble winz,
const GLdouble modelMatrix[16], const GLdouble projMatrix[16],
const GLint viewport[4], GLdouble *objx, GLdouble *objy, GLdouble *objz);
Map the specified window coordinates (winx, winy, winz) into object coordinates, using transformations defined by a modelview matrix (modelMatrix), projection matrix (projMatrix), and viewport (viewport). The resulting object coordinates are returned in objx, objy, and objz. The function returns GL_TRUE, indicating success, or GL_FALSE, indicating failure (such as an noninvertible matrix). This operation does not attempt to clip the coordinates to the viewport or eliminate depth values that fall outside of glDepthRange().
There are inherent difficulties in trying to reverse the transformation process. A two-dimensional screen location could have originated from anywhere on an entire line in three-dimensional space. To disambiguate the result, gluUnProject() requires that a window depth coordinate (winz) be provided and that winz be specified in terms of glDepthRange(). For the default values of glDepthRange(), winz at 0.0 will request the world coordinates of the transformed point at the near clipping plane, while winz at 1.0 will request the point at the far clipping plane.
Example 3-8 (again, see the PDF) demonstrates gluUnProject() by reading the mouse position and determining the three-dimensional points at the near and far clipping planes from which it was transformed. The computed world coordinates are printed to standard output, but the rendered window itself is just black.
In terms of performance, I found this quickly via Google as an example of what you might not want to do using gluUnProject, with a link to what might lead to a better alternative. I have absolutely no idea how applicable it is to the iPhone, as I'm still a newb with OpenGL ES. Ask me again in a month. ;-)
You need to have the opengl projection and modelview matrices. Multiply them to gain the modelview projection matrix. Invert this matrix to get a matrix that transforms clip space coordinates into world coordinates. Transform your touch point so it corresponds to clip coordinates: the center of the screen should be zero, while the edges should be +1/-1 for X and Y respectively.
construct two points, one at (0,0,0) and one at (touch_x,touch_y,-1) and transform both by the inverse modelview projection matrix.
Do the inverse of a perspective divide.
You should get two points describing a line from the center of the camera into "the far distance" (the farplane).
Do picking based on simplified bounding boxes of your models. You should be able to find ray/box intersection algorithms aplenty on the web.
Another solution is to paint each of the models in a slightly different color into an offscreen buffer and reading the color at the touch point from there, telling you which brich was touched.
Here's source for a cursor I wrote for a little project using bullet physics:
float x=((float)mpos.x/screensize.x)*2.0f -1.0f;
float y=((float)mpos.y/screensize.y)*-2.0f +1.0f;
p2=renderer->camera.unProject(vec4(x,y,1.0f,1));
p2/=p2.w;
vec4 pos=activecam.GetView().col_t;
p1=pos+(((vec3)p2 - (vec3)pos) / 2048.0f * 0.1f);
p1.w=1.0f;
btCollisionWorld::ClosestRayResultCallback rayCallback(btVector3(p1.x,p1.y,p1.z),btVector3(p2.x,p2.y,p2.z));
game.dynamicsWorld->rayTest(btVector3(p1.x,p1.y,p1.z),btVector3(p2.x,p2.y,p2.z), rayCallback);
if (rayCallback.hasHit())
{
btRigidBody* body = btRigidBody::upcast(rayCallback.m_collisionObject);
if(body==game.worldBody)
{
renderer->setHighlight(0);
}
else if (body)
{
Entity* ent=(Entity*)body->getUserPointer();
if(ent)
{
renderer->setHighlight(dynamic_cast<ModelEntity*>(ent));
//cerr<<"hit ";
//cerr<<ent->getName()<<endl;
}
}
}
Imagine a line that extends from the viewer's eye
through the screen touch point into your 3D model space.
If that line intersects any of the cube's faces, then the user has touched the cube.
Two solutions present themselves. Both of them should achieve the end goal, albeit by a different means: rather than answering "what world coordinate is under the mouse?", they answer the question "what object is rendered under the mouse?".
One is to draw a simplified version of your model to an off-screen buffer, rendering the center of each face using a distinct color (and adjusting the lighting so color is preserved identically). You can then detect those colors in the buffer (e.g. pixmap), and map mouse locations to them.
The other is to use OpenGL picking. There's a decent-looking tutorial here. The basic idea is to put OpenGL in select mode, restrict the viewport to a small (perhaps 3x3 or 5x5) window around the point of interest, and then render the scene (or a simplified version of it) using OpenGL "names" (integer identifiers) to identify the components making up each face. At the end of this process, OpenGL can give you a list of the names that were rendered in the selection viewport. Mapping these identifiers back to original objects will let you determine what object is under the mouse cursor.
Google for opengl screen to world (for example there’s a thread where somebody wants to do exactly what you are looking for on GameDev.net). There is a gluUnProject function that does precisely this, but it’s not available on iPhone, so that you have to port it (see this source from the Mesa project). Or maybe there’s already some publicly available source somewhere?