Is there any industry standard framework available in the market for implementing Event Sourcing and CQRS (Command Query Responsibility Segregation) ?
You can use Axon framework in java
and Prooph in php.
For node.js environment where is two major frameworks which are actual maintained nowadays - ReSolve and Wolkenkit. These frameworks also contain integrated solutions for communication with front-end web page (SPA application).
There are back-end only libraries for eventsourcing for node.js, including Node-Eventstore and Node-cqrs, but it's more libraries than frameworks for production applications.
Note that I recommended to implement your own Framework in the comment above. However I can still refer you to Akka. Akka is an actor model implementation that comes with support for event sourcing. It is available for .NET, Scala and Java:
See:
https://getakka.net/articles/intro/what-is-akka.html (.NET)
https://akka.io/docs/ (Scala & Java)
I've read some articles (Stackoverflow, Wikipedia, Simone Busoli, etc.) about Inversion of Control (IoC) and am starting to get my head around the concept. I've also been studying the Entity Framework (EF) and am wondering where specifically IoC is present within the EF? Here's a simple EF example I've been looking at: (EF Code First: new DB)
Inversion of Control is a pattern that aims at loosely coupling an application. It puts the application in charge of all of its dependencies (whether or not they are in libraries or frameworks).
EF is not an application, it is a library. You can wire it up with IoC, but since it is not an application, it contains no IoC.
That said, it is possible to develop frameworks and libraries to be IoC or DI (dependency injection) friendly. There are a couple of great articles on that topic:
http://blog.ploeh.dk/2014/05/19/di-friendly-library/
http://blog.ploeh.dk/2014/05/19/di-friendly-framework/
Mark Seemann (the author of that blog) has written a great book on the subject of DI in .NET, which I highly recommend because there is a lot of misinformation and outdated information on the web about IoC and DI. I am confident once you read the book you will understand how to use IoC with EF, but it is not something that can be answered in a paragraph or two.
We are about to take on a large project implemented in Grails (2.3.7). The application makes heavy use of many different (end-points as well) REST-ful webservices. We are of course interested in using what is considered to be "best standards" (at least currently).
We are currently considering:
- Using the Groovy HTTP-builder
- Using the "REST Client builder" plugin
Any other we should consider and what are your experiences using the above mentioned?
I have used both http://grails.org/plugin/rest and http://grails.org/plugin/rest-client-builder and both provide a nice wrapper around HTTP Builder library. The "rest" plugin provides dynamic methods for you if you like using that syntax. I prefer REST client builder though. Both are easy to work with.
My development team is evaluating the various frameworks available for .NET to simplify our programming, one of which is CSLA. I have to admit to being a bit confused as to whether or not CSLA would benefit from being used in conjunction with a dependency injection framework, such as Spring.net or Windsor. If we combined one of those two DI frameworks with, say, the Entity Framework to handle ORM duties, does that negate the need or benefit of using CSLA altogether?
I have various levels of understanding of all these frameworks, and I'm trying to get a big picture of what will best benefit our enterprise architecture and object design.
Thank you!
CSLA is a framework for creating business entities, so has separate concerns than an IoC container or ORM. In a enterprise application you should consider the benefits of all three.
In particular, you should consider CSLA if you want data binding built in to your models, dirty checking, N-level undo, validation and business rules, as well as the data portal implementation which allows easy configuration for n-tier deployments.
Short answer: Yes.
Long answer: It requires a bit of grunt work and some experimentation to setup, but it can be done without fundamentally breaking CSLA. I put together a working prototype using StructureMap and the repository pattern and used the BuildUp method of Setter Injection to inject within CSLA. I used a method similar to the one found here to ensure that my business objects are re-injected when the objects are serialized.
I also use the registry base class of StructureMap to separate my configuration into presentation, CSLA client, CSLA server, and CSLA global settings. This way I can use the linked file feature of Visual Studio to include the CSLA server and CSLA global configuration files within the server-side Data Portal and the configuration will always be the same in both places. This was to ensure I can still change the Data Portal configuration settings in CSLA from 2 tier to 3 tier without breaking anything.
Anyway, I am still weighing the potential benefits with the drawbacks to using DI, but so far I am leaning in the direction of using it because testing will be much easier although I am skeptical of trying to use any of the advanced features of DI such as interception. I recommend reading the book Dependency Injection in .NET by Mark Seemann to understand the right and wrong way to use DI because there is a lot of misinformation on the Internet.
My question is very simple, my intention is to generate a repository with your responses so it could serve to the community when selecting frameworks for developing enterprise general purpose applications.
This could apply very well for general purpose languages such as C++, C# or Java.
What Framework do you recommend for generating Layered Architectures?
Based on you experience why do you prefer the usage of some Framework versus your own architecture?
How long do you believe your selected Framework will stay as a preferred option in the software development industry?
This is indeed an overly general question, especially since there are so many interpretations of the very word framework, and within the world of frameworks many different kinds for different tasks. Nevertheless, I'll give it a shot for Java.
Java
Java EE
The default overall enterprise framework of Java is called Java EE. Java EE strongly emphasis a layered architecture. It's a quite large framework and learning every aspect of it can take some time. It supports several types of applications. Extremely small and simple ones may only use JSP files with some scriptlets, while larger ones may use much more.
Java EE doesn't really enforce you to use all parts of it, but you pick and choose what you like.
Top down it consists of the following parts:
Web layer
For the web layer Java EE primarily defines a component and MVC based Web Framework called JSF - JavaServer Faces. JSF utilizes an XML based view description language (templating language) called Facelets. Pages are created by defining templates and letting template clients provide content for them, including other facelets and finally placing components and general markup on them.
JSF provides a well defined life-cyle for doing all the things that every web app should do: converting request values, validating them, calling out to business logic (the model) and finally delegating to a (Facelets) view for rendering.
For a more elaborate description look up some of the articles by BalusC here, e.g. What are the main disadvantages of Java Server Faces 2.0?
Business layer
The business layer in the Java EE framework is represented by a light-weight business component framework called EJB - Enterprise JavaBeans. EJBs are supposed to contain the pure business logic of an application. Among others EJBs take care of transactions, concurrency and when needed remoting.
An ordinary Java class becomes an EJB by applying the #Stateless annotation. By default, every method of that bean is then automatically transactional. Meaning, if the method is called and no transaction is active one is started, otherwise one is joined. If needed this behavior can be tuned or even disabled. In the majority of cases transactions will be transparent to the programmer, but if needed there is an explicit API in Java EE to manage them manually. This is the JTA API - Java Transaction API.
Methods on an EJB can easily be made to execute asynchronous by using the #Asynchronous annotation.
Java EE explicitly supports layering via the concept of a separate module specifically for EJBs. This isolates those beans and prevents them from accessing their higher layer. See this Packaging EJB in JavaEE 6 WAR vs EAR for a more elaborate explanation.
Persistence layer
For persistence the Java EE framework comes with a standard ORM framework called JPA - Java Persistence API. This is based on annotating plain java classes with the #Entity annotation and a property or field on them with #Id. Optionally (if needed) further information can be specified via annotations on how objects and object relations map to a relational database.
JPA heavily emphasizes slim entities. This means the entities themselves are as much as possible POJOs that can be easily send to other layers and even remote clients. An entity in Java EE typically does not take care of its own persistence (i.e. it does not hold any references to DB connections and such). Instead, a separate class called the EntityManager is provided to work with entities.
The most convenient way of working with this EntityManager is from within an EJB bean, which makes obtaining an instance and the handling of transactions a breeze. However, using JPA in any other layer, even outside the framework (e.g. in Java SE) is supported as well.
These are the most important services related to the traditional layers in a typical enterprise app, but the Java EE framework supports a great many additional services. Some of which are:
Messaging
Messaging is directly supported in the Java EE framework via the JMS API - Java Messaging Service. This allows business code to send messages to so-called queues and topics. Various parts of the application or even remote applications can listen to such a queue or topic.
The EJB component framework even has a type of bean that is specifically tailored for messaging; the message driven bean which has a onMessage method that is automatically invoked when a new message for the queue or topic that the bean is listening to comes in.
Next to JMS, Java EE also provides an event-bus, which is a simple light-weight alternative to full blown messaging. This is provided via the CDI API, which is a comprehensive API that among others provides scopes for the web layer and takes care of dependency injections. Being a rather new API it currently partially overlaps with EJB and the so-called managed beans from JSF.
Remoting
Java EE provides a lot of options for remoting out of the box. EJBs can be exposed to external code willing and able to communicate via a binary protocol by merely letting them implement a remote interface.
If binary communication is not an option, Java EE also provides various web service implementations. This is done via among others JAX-WS (web services, soap) and JAX-RS (Rest).
Scheduling
For scheduling periodic or timed jobs, Java EE offers a simple timer API. This API supports CRON-like timers using natural language, as well as timers for delayed execution of code or follow up checks.
This part of Java EE is usable but as mentioned fairly basic.
There are quite some more things in Java EE, but I think this about covers the most important things.
Spring
An alternative enterprise framework for Java is Spring. This is a proprietary, though fully open source framework.
Just as the Java EE framework, the Spring framework contains a web framework (called Spring MVC), a business component framework (simply called Spring, or Core Spring Framework) and a web services stack (called Spring Web Services).
Although many parts of the Java EE framework can be used standalone, Spring puts more emphasis on building up your own stack than Java EE does.
The choice of Java EE vs Spring is often a religiously influenced one. Technically both frameworks offer a similar programming model and a comparable amount of features. Java EE may be seen as slightly more light-weight (emphasis convention over configuration) and having the benefit of type-safe injections, while Spring may offer more of those smaller convenience methods that developers often need.
Additionally Spring offers a more thoroughly and directly usable security API (called Spring Security), where Java EE leaves a lot of security details open to (third party) vendors.
To specifically answer the second question:
Developing your own framework gives you the burden of having to maintain it and educating new developers in using it.
The larger your framework becomes, the more time you have to devote specifically to it and the less time you thus have to solve your actual business problem. This is okay if your business problem is the framework, but otherwise it can become a bit of a problem, even for very large companies that can dedicate a group of people to such a framework.
If you're a smaller company (say ~15 developer max) this can really become a huge burden.
Additionally, if your own framework is the kind of framework that can take advantage of third party developments (e.g. third parties can develop components for JSF), then your own framework obviously won't be able to take advantage of that.
Unless of course you open source your own framework, but this will only significantly increase the burden of supporting it. Just dumping your source code on sourceforge does not really count. You will have to actively support it. All of a sudden your framework becomes their framework with maybe 'weird' feature requests and awkward error reports for environments that you have no personal interest in.
This also assumes that your framework will actually be used by external users. Unless it's really very, very, good and you put lots of energy in it, this will probably not happen if it's simply the umpteenth Java web- or ORM framework.
Obviously, some people have to take up the job of creating new frameworks, otherwise the industry just stagnates, but if your prime concern is your business problem I would really think twice of starting your own framework.
Very vague question, I'm not really sure it's ever a good idea to "write your own" at this point for a work project (unless writing your own, IS the project). If it's a learning exercise, fine, but otherwise go use one of the libraries written by people who have been doing it far longer. If you really want to get involved, read their code, try and contribute patches etc.
For .Net there is Sharp Architecture Which is a pretty popular framework for layered applications.
Here's some of the stuff I use (I don't use Sharp Architecture)
First, the infrastructure stuff
For Dependency Injection, I use StructureMap. I use it because it's way more robust and performant than anything I would or could write, and it's very well supported within the .Net community. It also sticks to being DI, and doesn't venture out into other things that I might want to use other libs for (AOP etc). The fluent configuration is fantastic (but many .Net DI Tools have that now)
For AOP, I use Linfu Dynamic Proxy. I know a lot of people that like the code weaver variety for performance reasons, but that's always seemed a bit like premature optimization to me.
For a DataMapper, I use AutoMapper. This is one where I'm on again off again. If you can do your mappings based just on convention, then great, I'll use it. Once I have to start tweaking the configuration to do special things.... to me that starts to get into the gray area where the code might be more clear with just some left=>right wrapped in a function.
Web/UI
Asp.Net MVC. Although to be quite honest, I'm having a falling out lately and may soon be moving to FubuMvc. Asp.Net MVC seems like it has split personalities in terms of API design (dynamic over here, static over there, using blocks to render forms, but System.Actions to render other things etc). Combine that with the fact that it's not really OSS (you can't submit a patch), and to me there's a compelling reason why the community should come up with something better that's OSS.
Persistence
NHibernate, Specifically Fluent NHibernate. Sure I'd love to write my own OR/M, but at the same time I'm certain that the hordes of developers who have worked on NHibernate are way smarter than me.
Services/Distribution etc
WCF for Synchronous calls
NServiceBus for Messaging and most async calls.
Most of this stuff is OSS, so how long will it be around, well, I would imagine a good long while.
This question doesn't work very well. Selecting frameworks is difficult, and very context specific. For each selection process you might end up with a simple shortlist and a simple list of questions to answer, but those lists do not transfer well to other selections.
The number of parameters and the parameter sensitivity influencing a decision is very large, and at enterprise level a lot of them are not technical.
Currently, there are no frameworks available that are ready to support these near-term enterprise needs:
the switch for most of the workforce from pc to tablet and phone;
the switch from web client and rdbms to p2p/disconnected based storage and distribution