Should CSLA be used with a dependency injection framework? - inversion-of-control

My development team is evaluating the various frameworks available for .NET to simplify our programming, one of which is CSLA. I have to admit to being a bit confused as to whether or not CSLA would benefit from being used in conjunction with a dependency injection framework, such as Spring.net or Windsor. If we combined one of those two DI frameworks with, say, the Entity Framework to handle ORM duties, does that negate the need or benefit of using CSLA altogether?
I have various levels of understanding of all these frameworks, and I'm trying to get a big picture of what will best benefit our enterprise architecture and object design.
Thank you!

CSLA is a framework for creating business entities, so has separate concerns than an IoC container or ORM. In a enterprise application you should consider the benefits of all three.
In particular, you should consider CSLA if you want data binding built in to your models, dirty checking, N-level undo, validation and business rules, as well as the data portal implementation which allows easy configuration for n-tier deployments.

Short answer: Yes.
Long answer: It requires a bit of grunt work and some experimentation to setup, but it can be done without fundamentally breaking CSLA. I put together a working prototype using StructureMap and the repository pattern and used the BuildUp method of Setter Injection to inject within CSLA. I used a method similar to the one found here to ensure that my business objects are re-injected when the objects are serialized.
I also use the registry base class of StructureMap to separate my configuration into presentation, CSLA client, CSLA server, and CSLA global settings. This way I can use the linked file feature of Visual Studio to include the CSLA server and CSLA global configuration files within the server-side Data Portal and the configuration will always be the same in both places. This was to ensure I can still change the Data Portal configuration settings in CSLA from 2 tier to 3 tier without breaking anything.
Anyway, I am still weighing the potential benefits with the drawbacks to using DI, but so far I am leaning in the direction of using it because testing will be much easier although I am skeptical of trying to use any of the advanced features of DI such as interception. I recommend reading the book Dependency Injection in .NET by Mark Seemann to understand the right and wrong way to use DI because there is a lot of misinformation on the Internet.

Related

WCM use class can be used wherever we can use sling models.Which one should be preferred and why?

If given an option to use Sling Models or WCM use class which one should be preferred when and why?
Is either of them better performance wise?
Thanks in Advance
Sling models are saving you a lot of time for accessing simple objects as the current page/resource, injecting some properties or services, adapting from resource or sling http request to your model. Sure with the use the plain API your code will execute a little bit faster, because you initialize only the objects you really need, but you have to do all that things "manually". I think that this sightly introduction is giving a good overview of all possible implementation you can go with. You can also have a look at the sightly official documentation. Below you can find a quick overview of the what you can expect and hopefully make your decision easier (quoted from the offical sightly documentation).
Java Use Provider
Advantages
Use-objects provided through bundles:
faster to initialise and execute than Sling Models for similar code
easy to extend from other similar Use-objects
simple setup for unit testing
Use-objects backed by Resources:
faster to initialise and execute than Sling Models for similar code
easy to override from inheriting components through search path
overlay or by using the sling:resourceSuperType property, allowing
for greater flexibility
business logic for components sits next to the Sightly scripts where
the objects are used
Disadvantages
Use-objects provided through bundles:
lacks flexibility in terms of component overlaying
Use-objects backed by Resources:
cannot extend other Java objects
the Java project might need a different setup to allow running unit
tests, since the objects will be deployed like content
Sling Models Use Provider
Advantages
convenient injection annotations for data retrieval
easy to extend from other Sling Models
simple setup for unit testing
Disadvantages
lacks flexibility in terms of component overlaying, relying on
service.ranking configurations
If you ask me I would always take a framework as sling models or slice which makes the development easier and faster. At the end the performance impact by using a framework is not really a problem, would be not the only one third party framework in the project. But if your project is performance oriented probably you could make some tests with all possibilities you have and decide if such a framework suits your needs (or just mix both).

Entity Framework 6 Database-First and Onion Architecture

I am using Entity Framework 6 database-first. I am converting the project to implement the onion architecture to move towards better separation of concerns. I have read many articles and watched many videos but having some issues deciding on my solution structure.
I have 4 projects: Core, Infrastructure, Web & Tests.
From what I've learned, the .edmx file should be placed under my "Infrastructure" folder. However, I have also read about using the Repository and Unit of Work patterns to assist with EF decoupling and using Dependency Injection.
With this being said:
Will I have to create Repository Interfaces under CORE for ALL entities in my model? If so, how would one maintain this on a huge database? I have looked into automapper but found issues with it presenting IEnumererables vs. IQueryables but there is an extension available it has to hlep with this. I can try this route deeper but want to hear back first.
As an alternative, should I leave my edmx in Infrastructure and move the .tt T4 files for my entities to CORE? Does this present any tight coupling or a good solution?
Would a generic Repository interface work well with the suggestion you provide? Or maybe EF6 already resolves the Repository and UoW patterns issue?
Thank you for looking at my question and please present any alternative responses as well.
I found a similar post here that was not answered:
EF6 and Onion architecture - database first and without Repository pattern
Database first doesn't completely rule out Onion architecture (aka Ports and Adapters or Hexagonal Architecture, so you if you see references to those they're the same thing), but it's certainly more difficult. Onion Architecture and the separation of concerns it allows fit very nicely with a domain-driven design (I think you mentioned on twitter you'd already seen some of my videos on this subject on Pluralsight).
You should definitely avoid putting the EDMX in the Core or Web projects - Infrastructure is the right location for that. At that point, with database-first, you're going to have EF entities in Infrastructure. You want your business objects/domain entities to live in Core, though. At that point you basically have two options if you want to continue down this path:
1) Switch from database first to code first (perhaps using a tool) so that you can have POCO entities in Core.
2) Map back and forth between your Infrastructure entities and your Core objects, perhaps using something like AutoMapper. Before EF supported POCO entities this was the approach I followed when using it, and I would write repositories that only dealt with Core objects but internally would map to EF-specific entities.
As to your questions about Repositories and Units of Work, there's been a lot written about this already, on SO and elsewhere. You can certainly use a generic repository implementation to allow for easy CRUD access to a large set of entities, and it sounds like that may be a quick way for you to move forward in your scenario. However, my general recommendation is to avoid generic repositories as your go-to means of accessing your business objects, and instead use Aggregates (see DDD or my DDD course w/Julie Lerman on Pluralsight) with one concrete repository per Aggregate Root. You can separate out complex business entities from CRUD operations, too, and only follow the Aggregate approach where it is warranted. The benefit you get from this approach is that you're constraining how the objects are accessed, and getting similar benefits to a Facade over your (large) set of database entities.
Don't feel like you can only have one dbcontext per application. It sounds like you are evolving this design over time, not starting with a green field application. To that end, you could keep your .edmx file and perhaps a generic repository for CRUD purposes, but then create a new code first dbcontext for a specific set of operations that warrant POCO entities, separation of concerns, increased testability, etc. Over time, you can shift the bulk of the essential code to use this, while still keeping the existing dbcontext so you don't lose and current functionality.
I am using entity framework 6.1 in my DDD project. Code first works out very well if you want to do Onion Architecture.
In my project we have completely isolated Repository from the Domain Model. Application Service is what uses repository to load aggregates from and persist aggregates to the database. Hence, there is no repository interfaces in the domain (core).
Second option of using T4 to generate POCO in a separate assembly is a good idea. Please remember that your domain model (core) should be persistence-ignorant.
While generic repository are good for enforcing aggregate-level operations, I prefer using specific repository more, simply because not every Aggregate is going to need all of those generic repository operations.
http://codingcraft.wordpress.com/

Play framework SOLID principles

I'm learning Scala/Play2.1.3 from a C#/.Net/ASP.NET MVC background.
I wonder why there is no dependency injection support by default?
In Play samples, all data-access methods are static in the domain model classes. They use factories instead of injections. What if I want to mock some data-access methods for unit-testing?
There is no ready-to-use high-level ORM there. Actually they discourage me to use ORMs! Regarding SQL DBs I can't believe that I have to write joins again which I don't remember the last time I wrote a join clause. Isn't it a step backward?
I've learned to use SOLID principals which are not observed in Play framework (completely) IMO.
Am I wrong your I should consider using another framework?
You are right, the majority of samples does not use Dependency Injection. But since the 2.1 version, it is possible to inject the controllers, and their dependencies.
For the dependency injection, check the doc and also, how to unit test (last paragraph).
But since there are many static calls, you could end up with some static reference somewhere and you'll not be able to unit test your code.
But I think Play is a great framework, the team is modularizing more and more the framework, so that it will be better and better regarding SOLID principles.

Is it feasible to build company specific framework that wraps NHibernate?

I heard that companies that use Java technologies, they used to build their own custom Framework that wraps Hibernate. However, is it really feasible for their .Net peers to do the same thing with NHibernate or Entity Framework?
This is almost always a horrible idea - I think Ayende sums it up best in this article. In general, you should consider NHibernate itself to be the "wrapper" around your data access - attempting to build an abstraction layer on top of it is probably going to be a losing proposition.
Actually, you should check out some of the articles on .NET Junkie's weblog. He wrote several great posts on how to deal with repositories, queries, commands and so on. We've been using these in a very large enterprise system where we switch between an in-memory dictionary, an in-memory SQLite database and a production environment using SQL Server or Oracle. Obviously, we use NHibernate for this.
I use the repository pattern and a separate project/dll to abstract away the data framework nhibernate / entity framework. this is a good starting point http://codebetter.com/petervanooijen/2008/04/04/wrapping-up-nhibernate-in-repositories/

Frameworks for Layering reusable Architectures

My question is very simple, my intention is to generate a repository with your responses so it could serve to the community when selecting frameworks for developing enterprise general purpose applications.
This could apply very well for general purpose languages such as C++, C# or Java.
What Framework do you recommend for generating Layered Architectures?
Based on you experience why do you prefer the usage of some Framework versus your own architecture?
How long do you believe your selected Framework will stay as a preferred option in the software development industry?
This is indeed an overly general question, especially since there are so many interpretations of the very word framework, and within the world of frameworks many different kinds for different tasks. Nevertheless, I'll give it a shot for Java.
Java
Java EE
The default overall enterprise framework of Java is called Java EE. Java EE strongly emphasis a layered architecture. It's a quite large framework and learning every aspect of it can take some time. It supports several types of applications. Extremely small and simple ones may only use JSP files with some scriptlets, while larger ones may use much more.
Java EE doesn't really enforce you to use all parts of it, but you pick and choose what you like.
Top down it consists of the following parts:
Web layer
For the web layer Java EE primarily defines a component and MVC based Web Framework called JSF - JavaServer Faces. JSF utilizes an XML based view description language (templating language) called Facelets. Pages are created by defining templates and letting template clients provide content for them, including other facelets and finally placing components and general markup on them.
JSF provides a well defined life-cyle for doing all the things that every web app should do: converting request values, validating them, calling out to business logic (the model) and finally delegating to a (Facelets) view for rendering.
For a more elaborate description look up some of the articles by BalusC here, e.g. What are the main disadvantages of Java Server Faces 2.0?
Business layer
The business layer in the Java EE framework is represented by a light-weight business component framework called EJB - Enterprise JavaBeans. EJBs are supposed to contain the pure business logic of an application. Among others EJBs take care of transactions, concurrency and when needed remoting.
An ordinary Java class becomes an EJB by applying the #Stateless annotation. By default, every method of that bean is then automatically transactional. Meaning, if the method is called and no transaction is active one is started, otherwise one is joined. If needed this behavior can be tuned or even disabled. In the majority of cases transactions will be transparent to the programmer, but if needed there is an explicit API in Java EE to manage them manually. This is the JTA API - Java Transaction API.
Methods on an EJB can easily be made to execute asynchronous by using the #Asynchronous annotation.
Java EE explicitly supports layering via the concept of a separate module specifically for EJBs. This isolates those beans and prevents them from accessing their higher layer. See this Packaging EJB in JavaEE 6 WAR vs EAR for a more elaborate explanation.
Persistence layer
For persistence the Java EE framework comes with a standard ORM framework called JPA - Java Persistence API. This is based on annotating plain java classes with the #Entity annotation and a property or field on them with #Id. Optionally (if needed) further information can be specified via annotations on how objects and object relations map to a relational database.
JPA heavily emphasizes slim entities. This means the entities themselves are as much as possible POJOs that can be easily send to other layers and even remote clients. An entity in Java EE typically does not take care of its own persistence (i.e. it does not hold any references to DB connections and such). Instead, a separate class called the EntityManager is provided to work with entities.
The most convenient way of working with this EntityManager is from within an EJB bean, which makes obtaining an instance and the handling of transactions a breeze. However, using JPA in any other layer, even outside the framework (e.g. in Java SE) is supported as well.
These are the most important services related to the traditional layers in a typical enterprise app, but the Java EE framework supports a great many additional services. Some of which are:
Messaging
Messaging is directly supported in the Java EE framework via the JMS API - Java Messaging Service. This allows business code to send messages to so-called queues and topics. Various parts of the application or even remote applications can listen to such a queue or topic.
The EJB component framework even has a type of bean that is specifically tailored for messaging; the message driven bean which has a onMessage method that is automatically invoked when a new message for the queue or topic that the bean is listening to comes in.
Next to JMS, Java EE also provides an event-bus, which is a simple light-weight alternative to full blown messaging. This is provided via the CDI API, which is a comprehensive API that among others provides scopes for the web layer and takes care of dependency injections. Being a rather new API it currently partially overlaps with EJB and the so-called managed beans from JSF.
Remoting
Java EE provides a lot of options for remoting out of the box. EJBs can be exposed to external code willing and able to communicate via a binary protocol by merely letting them implement a remote interface.
If binary communication is not an option, Java EE also provides various web service implementations. This is done via among others JAX-WS (web services, soap) and JAX-RS (Rest).
Scheduling
For scheduling periodic or timed jobs, Java EE offers a simple timer API. This API supports CRON-like timers using natural language, as well as timers for delayed execution of code or follow up checks.
This part of Java EE is usable but as mentioned fairly basic.
There are quite some more things in Java EE, but I think this about covers the most important things.
Spring
An alternative enterprise framework for Java is Spring. This is a proprietary, though fully open source framework.
Just as the Java EE framework, the Spring framework contains a web framework (called Spring MVC), a business component framework (simply called Spring, or Core Spring Framework) and a web services stack (called Spring Web Services).
Although many parts of the Java EE framework can be used standalone, Spring puts more emphasis on building up your own stack than Java EE does.
The choice of Java EE vs Spring is often a religiously influenced one. Technically both frameworks offer a similar programming model and a comparable amount of features. Java EE may be seen as slightly more light-weight (emphasis convention over configuration) and having the benefit of type-safe injections, while Spring may offer more of those smaller convenience methods that developers often need.
Additionally Spring offers a more thoroughly and directly usable security API (called Spring Security), where Java EE leaves a lot of security details open to (third party) vendors.
To specifically answer the second question:
Developing your own framework gives you the burden of having to maintain it and educating new developers in using it.
The larger your framework becomes, the more time you have to devote specifically to it and the less time you thus have to solve your actual business problem. This is okay if your business problem is the framework, but otherwise it can become a bit of a problem, even for very large companies that can dedicate a group of people to such a framework.
If you're a smaller company (say ~15 developer max) this can really become a huge burden.
Additionally, if your own framework is the kind of framework that can take advantage of third party developments (e.g. third parties can develop components for JSF), then your own framework obviously won't be able to take advantage of that.
Unless of course you open source your own framework, but this will only significantly increase the burden of supporting it. Just dumping your source code on sourceforge does not really count. You will have to actively support it. All of a sudden your framework becomes their framework with maybe 'weird' feature requests and awkward error reports for environments that you have no personal interest in.
This also assumes that your framework will actually be used by external users. Unless it's really very, very, good and you put lots of energy in it, this will probably not happen if it's simply the umpteenth Java web- or ORM framework.
Obviously, some people have to take up the job of creating new frameworks, otherwise the industry just stagnates, but if your prime concern is your business problem I would really think twice of starting your own framework.
Very vague question, I'm not really sure it's ever a good idea to "write your own" at this point for a work project (unless writing your own, IS the project). If it's a learning exercise, fine, but otherwise go use one of the libraries written by people who have been doing it far longer. If you really want to get involved, read their code, try and contribute patches etc.
For .Net there is Sharp Architecture Which is a pretty popular framework for layered applications.
Here's some of the stuff I use (I don't use Sharp Architecture)
First, the infrastructure stuff
For Dependency Injection, I use StructureMap. I use it because it's way more robust and performant than anything I would or could write, and it's very well supported within the .Net community. It also sticks to being DI, and doesn't venture out into other things that I might want to use other libs for (AOP etc). The fluent configuration is fantastic (but many .Net DI Tools have that now)
For AOP, I use Linfu Dynamic Proxy. I know a lot of people that like the code weaver variety for performance reasons, but that's always seemed a bit like premature optimization to me.
For a DataMapper, I use AutoMapper. This is one where I'm on again off again. If you can do your mappings based just on convention, then great, I'll use it. Once I have to start tweaking the configuration to do special things.... to me that starts to get into the gray area where the code might be more clear with just some left=>right wrapped in a function.
Web/UI
Asp.Net MVC. Although to be quite honest, I'm having a falling out lately and may soon be moving to FubuMvc. Asp.Net MVC seems like it has split personalities in terms of API design (dynamic over here, static over there, using blocks to render forms, but System.Actions to render other things etc). Combine that with the fact that it's not really OSS (you can't submit a patch), and to me there's a compelling reason why the community should come up with something better that's OSS.
Persistence
NHibernate, Specifically Fluent NHibernate. Sure I'd love to write my own OR/M, but at the same time I'm certain that the hordes of developers who have worked on NHibernate are way smarter than me.
Services/Distribution etc
WCF for Synchronous calls
NServiceBus for Messaging and most async calls.
Most of this stuff is OSS, so how long will it be around, well, I would imagine a good long while.
This question doesn't work very well. Selecting frameworks is difficult, and very context specific. For each selection process you might end up with a simple shortlist and a simple list of questions to answer, but those lists do not transfer well to other selections.
The number of parameters and the parameter sensitivity influencing a decision is very large, and at enterprise level a lot of them are not technical.
Currently, there are no frameworks available that are ready to support these near-term enterprise needs:
the switch for most of the workforce from pc to tablet and phone;
the switch from web client and rdbms to p2p/disconnected based storage and distribution