Creating an object passing a lambda expression to the constructor - c#-3.0

I have an object with a number of properties.
I want to be able to assign some of these properties when I call the constructor.
The obvious solution is to either have a constructor that takes a parameter for each of the properties, but that's nasty when there are lots. Another solution would be to create overloads that each take a subset of property values, but I could end up with dozens of overloads.
So I thought, wouldn't it be nice if I could say..
MyObject x = new MyObject(o => o.Property1 = "ABC", o.PropertyN = xx, ...);
The problem is, I'm too dim to work out how to do it.
Do you know?

C# 3 allows you to do this with its object initializer syntax.
Here is an example:
using System;
class Program
{
static void Main()
{
Foo foo = new Foo { Bar = "bar" };
}
}
class Foo
{
public String Bar { get; set; }
}
The way this works is that the compiler creates an instance of the class with compiler-generated name (like <>g__initLocal0). Then the compiler takes each property that you initialize and sets the value of the property.
Basically the compiler translates the Main method above to something like this:
static void Main()
{
// Create an instance of "Foo".
Foo <>g__initLocal0 = new Foo();
// Set the property.
<>g__initLocal0.Bar = "bar";
// Now create my "Foo" instance and set it
// equal to the compiler's instance which
// has the property set.
Foo foo = <>g__initLocal0;
}

The object initializer syntax is the easiest to use and requires no extra code for the constructor.
However, if you need to do something more complex, like call methods, you could have a constructor that takes an Action param to perform the population of the object.
public class MyClass
{
public MyClass(Action<MyClass> populator)
{
populator.Invoke(this);
}
public int MyInt { get; set; }
public void DoSomething()
{
Console.WriteLine(this.MyInt);
}
}
Now you can use it like so.
var x = new MyClass(mc => { mc.MyInt = 1; mc.DoSomething(); });

Basically what Andrew was trying to say is if you have a class (MyObject for eg) with N properties, using the Object Initializer syntax of C# 3.0, you can set any subset of the N properties as so:
MyObject x = new MyObject {Property1 = 5, Property4 = "test", PropertyN = 6.7};
You can set any of the properties / fields that way./

class MyObject
{
public MyObject(params Action<MyObject>[]inputs)
{
foreach(Action<MyObject> input in inputs)
{
input(this);
}
}
}
I may have the function generic style wrong, but I think this is sort of what you're describing.

Related

Dart - Way to access a inherited static property from a parent class method

In PHP there is a way of accessing a static property value that is defined/overridden on an inheritor.
e.g.
class Foo {
public static $name='Foo';
public function who(){
echo static::$name;//the static operator
}
}
class Bar extends Foo {
public static $name='Bar';
}
$bar = new Bar();
$bar->who();
//Prints "Bar";
Is there ANY way of doing the exact same thing in Dart language?
Addressing comments:
About making it instance prop/method: There's a reason for the existence of static properties and methods and it's not having to create a new instance of the object to access a value or functionality that is not mutable.
Yes, but that's not how you are using it. Your use case is to invoke the method on an object, and therefore you really want an instance method. Now, some languages automatically allow invoking class methods as instance methods, and I see two choices for a language that offers that ability:
Statically transform fooInstance.classMethod() to ClassFoo.classMethod() based on the declared type (not the runtime type) of the object. This is what Java and C++ do.
Implicitly generate virtual instance methods that call the class method. This would allow fooInstance.classMethod() to invoke the appropriate method based on the runtime type of the object. For example, given:
class Foo {
static void f() => print('Foo.f');
}
You instead could write:
class Foo {
static void classMethod() => print('Foo.f');
final instanceMethod = classMethod;
}
and then you either could call Foo.classMethod() or Foo().instanceMethod() and do the same thing.
In either case, it's syntactic sugar and therefore isn't anything that you couldn't do yourself by being more verbose.
About the "meaning of static" and "only work because they allow invoking class methods as instance methods" : That affirmation is actually wrong. In the case of PHP, as per the example above, the Language is providing a way to access the TYPE of the class calling the method in the inheritance chain. A(methodA) >B > C. When C calls methodA, PHP allows you to know that the class type you're in is indeed C, but there's no object instance attached to it. the word "static" there is a replacement for the caller class type itself
All of that is still known at compilation time. That C derives from B derives from A is statically known, so when you try to invoke C.methodA, the compiler knows that it needs to look for methodA in B and then in A. There's no dynamic dispatch that occurs at runtime; that is still compile-time syntactic sugar. That is, if you wanted, you could explicitly write:
class A {
static void methodA() {}
}
class B extends A {
static void methodA() => A.methodA();
}
class C extends B {
static void methodA() => B.methodA();
}
Anyway, in your example, you could write:
class Foo {
static String name = 'Foo';
String get nameFromInstance => name;
void who() {
print(nameFromInstance);
}
}
class Bar extends Foo {
static String name = 'Bar';
#override
String get nameFromInstance => name;
}
void main() {
var bar = Bar();
bar.who(); // Prints: Bar
}

How to return multiple types of class types from single generic class in dart flutter?

I have multiple class like this:-
Class A {
static int xyz = 10;
int c;
int d;
static A getData() {
// Do something
return A()..c = xyz*5;
}
Class B {
static int abc = 10;
int c;
static B getData() {
// Do something
return B()..c = xyz*5;
}
So, here you can see that the the getData() is doing the same thing, but have different return types.
Is there any way to avoid duplicate implementation like this, can it be done by defining a single function which can reference the class and have multiple return type?
This has two parts: creating the object, and assigning to a field of the object.
Creating the object, you are mostly out of luck. The only way to create an object of a specific type in a generic method is by using reflection via dart:mirrors. However, you have indicated that this is for a Flutter project, and Flutter doesn't support reflection, so that isn't an option. The only way you are going to be able to dynamically create an object is to pass in a factory method that the generic method can call to construct the object.
Assigning to a field of the object is easier, but it requires that you either lose static type checking by using dynamic or by tying your classes together with inheritance. The latter is the preferable choice, but if you are working with a library than it isn't always an option.
Combining these two things, the code will look like this:
class Foo {
static int xyz = 10;
int c;
}
class A extends Foo {
int d;
static A getData() {
return modifyObject(() => A());
}
}
class B extends Foo {
static B getData() {
return modifyObject(() => B());
}
}
T modifyObject<T extends Foo>(T create()) {
return create()..c = Foo.xyz * 5;
}
Before doing this, though, I'd take a look at whether your project actually needs it. If your use case is as simple as your example, I would argue that this level of generalization is overkill and you are hurting your code's readability more than you are helping its modularity.

Find direct & indirect method usages if method is overriden in base class

please, help me to figure out how to write the query :)
The code is:
namespace ConsoleApplication1
{
class Program
{
static void Main()
{
var man = new Man("Joe");
Console.WriteLine(man.ToString());
}
}
public class SuperMan
{
public SuperMan(string name)
{
this.name = name;
}
public override string ToString()
{
return name;
}
string name;
}
public class Man : SuperMan
{
public Man(string name) : base(name)
{
}
}
}
I want to find all direct and indirect dependencies (methods) to Man.ToString(). There is only one call in Main() method.
The query I'm trying is:
from m in Methods
let depth0 = m.DepthOfIsUsing("ConsoleApplication1.SuperMan.ToString()")
where depth0 >= 0 orderby depth0
select new { m, depth0 }.
but it doesn't find dependent Program.Main() method....
How to modify query so that it finds usages for such kind of methods?
First let's look at direct callers. We want to list all methods that calls SuperMan.ToString() or any ToString() methods overriden by SuperMan.ToString(). It can looks like:
let baseMethods = Application.Methods.WithFullName("ConsoleApplication1.SuperMan.ToString()").Single().OverriddensBase
from m in Application.Methods.UsingAny(baseMethods)
where m.IsUsing("ConsoleApplication1.Man") // This filter can be added
select new { m, m.NbLinesOfCode }
Notice we put a filter clause, because in the real world pretty much every method calls object.ToString() (this is a particular case).
Now to handle indirect calls this is more tricky. We need to call the magic FillIterative() extension methods on generic sequences.
let baseMethods = Application.Methods.WithFullName("ConsoleApplication1.SuperMan.ToString()").Single().OverriddensBase
let recursiveCallers = baseMethods.FillIterative(methods => methods.SelectMany(m => m.MethodsCallingMe))
from pair in recursiveCallers
let method = pair.CodeElement
let depth = pair.Value
where method.IsUsing("ConsoleApplication1.Man") // Still same filter
select new { method , depth }
Et voilĂ !

autofac: IEnumerable<Lazy<IFoo, IFooMetaData>> --> Lazy.Value(with runtime param)?

Using Autofac, I have multiple IFoo components that take a run-time parameter in the constructor. I'm using some Metadata from the types along with the run-time parameter to construct and manage running instances.
interface IFoo
{
int RunTimeId { get; }
}
[FooMeta("ShaqFoo")]
class Foo1 : IFoo
{
public Foo1 (int runtTimeId)
{
...
}
[FooMeta("KungFoo")]
class Foo2 : IFoo
{
public Foo2 (int runtTimeId)
{
...
}
Module/Registration something like:
builder.Register<Func<int, Foo1>>(c =>
{
var cc = c.Resolve<IComponentContext>();
return id => cc.Resolve<Foo1>(TypedParameter.From<int>(id));
})
.As<Func<int, IFoo>>()
.WithMetadata<IFooMetaData>(m => m.For(sm => sm.FooType, typeof(Foo1)));
builder.Register<Func<int, Foo2>>(c =>
{
var cc = c.Resolve<IComponentContext>();
return id => cc.Resolve<Foo2>(TypedParameter.From<int>(id));
})
.As<Func<int, IFoo>>()
.WithMetadata<IFooMetaData>(m => m.For(sm => sm.FooType, typeof(Foo2)));
And a component that creates new Foos with the run-time parameters and metadata. I need to be create ALL IFoos for a given run-time parameter, and need to check for existing instances (essentially using Metadata + RunTimeId as a key) before creating.
public class FooActivator
{
public FooActivator(IEnumerable<Lazy<Func<int, IFoo>, IFooMetaData>> fooFactories)
{
m_FooFactories = fooFactories;
}
private void HandleNewRunTimeIdEvent(int id)
{
CreateFoosForNewId(id);
}
private void CreateFoosForNewId(int id)
{
foreach (var fooFactory in m_FooFactories)
{
if (!FooWithThisMetadataAndIdExists(fooFactory.Metadata.FooType, id))
{
var newFoo = fooFactory.Value(id);
}
}
}
}
Obviously, I can enumerate all of the IFoos and check metadata using the Lazy Enumeration, but can't pass in the run-time parameter to Lazy.Value. Seems like I need to pass in an Enumerable of Func<>s somehow, but can't figure out how to attach the metadata. Or maybe I need an entirely different approach?
Just getting my head wrapped around autofac, and hoping there's a clean way to accomplish this. I could settle for just using the concrete Foo type (instead of metadata) if there's a simple way to enumerate all of them (without creating them), and use the type + run-time Id as my key instead.
Updated the code with a working solution. Figured out how to register Factories properly with metadata. Seems to work.

Using Verify to confirm expected parameter values in Moq mock class

I'm trying to verify that a method within a mock is called with an expected object parameter. I'm using Moq, nUnit, and thinking that AutoFixture's Likeness should get the job done.
Below is a simplified version of what i'm trying to do.
Is there a way to do this with AutoFixture? Is there a better way to verify that Something is called with the appropriate parameter?
Overriding Equals in the A class to compare the property values and changing the Verify line to:
barMock.Verify(m => m.Something(a));
passes, however I'd rather not override Equals in every class like A in my project.
namespace Test
{
using Moq;
using NUnit.Framework;
using Ploeh.SemanticComparison.Fluent;
public class A
{
public int P1 { get; set; }
}
public interface IBar
{
void Something(A a);
}
public class Foo
{
public A Data { get; private set; }
public void DoSomethingWith(IBar bar)
{
Data = new A { P1 = 1 };
bar.Something(Data);
}
}
[TestFixture]
public class AutoFixtureTest
{
[Test]
public void TestSample()
{
var foo = new Foo();
var barMock = new Mock<IBar>();
var a = new A { P1 = 1 };
var expectedA = a.AsSource().OfLikeness<A>();
foo.DoSomethingWith(barMock.Object);
expectedA.ShouldEqual(foo.Data); // passes
barMock.Verify(m => m.Something(expectedA.Value)); // fails
}
}
}
In Verify Moq by default checks reference equality for arguments so it only passes when you provide the same instances (except if you've overriden Equals) in your tests and in your implementation.
In you case the expectedA.Value just returns the new A { P1 = 1 } created in the test which, of course, isn't the same instance created in DoSomethingWith.
You need to use Moq's It.Is construct to properly test this without overriding Equals (in fact for this you don't need Autofixture at all):
barMock.Verify(m => m.Something(It.Is<A>(arg => arg.P1 == a.P1)));
But if you have multiple properties like P1,P2,P3... AutoFixture can be useful:
barMock.Verify(m => m.Something(It.Is<A>(arg => expectedA.Equals(a))));
Because you don't need to write out the equality checks manually for all the properties.
If you upgrade to AutoFixture 2.9.1 (or newer) you can call the CreateProxy method on the Likeness instance which will emit a dynamic proxy for the destination type.
The generated dynamic proxy overrides Equals using Likeness which simplifies the syntax (quite a lot).
Here is the original test method, modified to use the Likeness proxy:
[Test]
public void TestSample()
{
var foo = new Foo();
var barMock = new Mock<IBar>();
var expected = new A().AsSource().OfLikeness<A>().CreateProxy();
expected.P1 = 1;
foo.DoSomethingWith(barMock.Object);
Assert.True(expected.Equals(foo.Data)); // passes
barMock.Verify(m => m.Something(expected)); // passes
}
Note that it also makes the test assertion much more specific than accepting Any instance.
You can find more details on this new feature here.