What I need to do is to create a "special" kind of median filter for image processing in Matlab - the "holey" median filter. This is a filter that excludes the element at the center of the area.
For standard median filter I use the medfilt2 function, but I can't pass the mask (kernel) for it as a matrix (it's not a linear transform).
For example, using standard averaging filter 3x3 I create the mask (kernel) as:
h = ones(3,3)/9;
And for "holey" averaging filter:
h = ones(3,3)/8;
h(2,2) = 0;
How to do the same thing with median filter? Is there any way to modify the medfilt2 or do I need to implement a running median on my own?
What about using the underlying function ordfilt2 and defining your own domain there?
https://www.mathworks.com/help/images/ref/ordfilt2.html
Using #Doug's idea, the following is an example that handles all cases:
hole position in even/odd mask size
median position in even/odd number of elements
Example:
%%# mask size: N-by-N
N = 3;
assert(N>=3);
%%# read image and add noise
I = im2double( imread('eight.tif') );
I = imnoise(I, 'salt & pepper',0.05);
%%# build mask with hole in center
h = true(N,N);
if mod(N,2) == 0
%# hole is a 2-by-2 square
h([N/2 N/2+1],[N/2 N/2+1]) = false(2);
else
%# hole is one point
h((N+1)/2,(N+1)/2) = false;
end
%%# compute median filter with hole
num = sum(h(:));
if mod(num,2) == 0
%# even case: average from using the two elements in the middle
I1 = ordfilt2(I, num/2, h, 'symmetric');
I2 = ordfilt2(I, num/2+1, h, 'symmetric');
J = imdivide( imadd(I1,I2), 2 );
else
%# odd case: note this is never reached
J = ordfilt2(I, (num+1)/2, h, 'symmetric');
end
%%# plot and compare against normal median filter
subplot(121), imshow(J)
subplot(122), imshow( medfilt2(I,[N N],'symmetric') );
My guess is that it does not exist, and that you would need to implement one yourself. You can write one as a matlab function or if speed is an issue, write one in C.
Another way to approach your problem is to use a rank filter. It is not the same as what you are asking for, but might be another way to achieve what you want.
Related
Say I have a signal that looks a bit like this:
that I am processing in MatLab, what functions would I have to use to get rid of the flattish area in the middle? is there any functions that can do that, or do I need to program it in myself? Currently I just have a blank function as I don't know where to start:
function removala = removal(a, b)
end
Is there any quick functions that can remove it or do I just have to search for all values below a threshold and remove them myself? For reference a and b are vectors of amplitude points.
use findpeaks:
% generating signal
x = 1:0.1:10;
y = rand(size(x))*0.5;
y([5,25,84]) = [6,-5.5,7.5];
z = y;
thresh = 0.75; % height threshold
% find peaks
[pks,locs] = findpeaks(z,'MinPeakProminence',thresh);
% remove signal noise between peaks
for ii = 1:length(locs)-1
zz = z(locs(ii)+1:locs(ii+1)-1);
zz(abs(zz) < thresh) = 0;
z(locs(ii)+1:locs(ii+1)-1) = zz;
end
% plot
plot(x,y);
hold on
plot(x,z);
plot(x(locs),pks,'og');
legend('original signal','modified signal','peaks')
You probably want to remove the signal whose absolute power is less than a certain threshold.
So the two input of your function would be the raw signal, and the threshold. The function will output a variable "cleanSignal"
function cleanSignal = removal(rawSignal,threshold)
simplest implementation. remove the data below threshold. If rawSignal is a matrix the resulting variable will be a vector concatenating all the epochs above threshold.
ind = abs(rawSignal)<threshold;
rawSignal(ind) = [];
cleanSignal = rawSignal;
This might not be the behavior that you want, since you want to preserve the original shape of your rawSignal matrix. So you can just "nan" the values below threshold.
ind = abs(rawSignal)<threshold;
rawSignal(ind) = nan;
cleanSignal = rawSignal;
end
Notice that this does not really removes flat signal, but signal which is close to 0.
If you really want to remove flat signal you should use
ind = abs(diff(rawSignal))<threshold;
I need to extract image patches of size s x s x 3 around specified 2D locations from an image (3 channels).
How can I do this efficiently without a for loop? I know I can extract one patch around (x,y) location as:
apatch = I(y-s/2:y+s/2, x-s/2:x+s/2, :)
How can I do this for many patches? I know I can use MATLAB's function blockproc but I can't specify the locations.
You can use im2col from the image processing toolbox to transform each pixel neighbourhood into a single column. The pixel neighbourhoods are selected such that each block is chose on a column-basis, which means that the blocks are constructed by traversing down the rows first, then proceeding to the next column and getting the neighbourhoods there.
You call im2col this way:
B = im2col(A, [M N]);
I'm assuming you'll want sliding / overlapping neighbourhoods and not distinct neighbourhoods, which are what is normally used when performing any kind of image filtering. A is your image and you want to find M x N pixel neighbourhoods transformed as columns. B would be the output where each neighbourhood is a single column and horizontally-tiled together. However, you'll probably want to handle the case where you want to grab pixel neighbourhoods along the borders of the image. In this case, you'll want to pad the image first. We're going to assume that M and N are odd to allow the padding to be easier. Specifically, you want to be sure that there are floor(M/2) rows padded on top of the image as well as the bottom as well as floor(N/2) columns padded to the left of the image as well as the right. As such, we should pad A first by using padarray. Let's assume that the border pixels will be replicated, which means that the padded rows and columns will simply be those grabbed from the top or bottom row, or the left and right column, depending on where we need to pad. Therefore:
Apad = padarray(A, floor([M N]/2), 'replicate');
For the next part, if you want to choose specify neighbourhoods, you can use sub2ind to convert your 2D co-ordinates into linear indices so you can select the right columns to get the right pixel blocks. However, because you have a colour image, you'll want to perform im2col on each colour channel. Unfortunately, im2col only works on grayscale images, and so you'd have to repeat this for each channel in your image.
As such, to get ready for patch sampling, do something like this:
B = arrayfun(#(x) im2col(Apad(:,:,x), [M N]), 1:size(A,3), 'uni', 0);
B = cat(3, B{:});
The above code will create a 3D version of im2col, where each 3D slice would be what im2col produces for each colour channel. Now, we can use sub2ind to convert your (x,y) co-ordinates into linear indices so that we can choose which pixel neighbourhoods we want. Therefore, assuming your positions are stored in vectors x and y, you would do something like this:
%// Generate linear indices
ind = sub2ind([size(A,1) size(A,2)], y, x);
%// Select neighbourhoods
%// Should be shaped as a MN x len(ind) x 3 matrix
neigh = B(:,ind,:);
%// Create cell arrays for each patch
patches = arrayfun(#(x) reshape(B(:,x,:), [M N 3]), 1:numel(ind), 'uni', 0);
patches will be a cell array where each element contains your desired patch at each location of (x,y) that you specify. Therefore, patches{1} would be the patch located at (x(1), y(1)), patches{2} would be the patch located at (x(2), y(2)), etc. For your copying and pasting pleasure, this is what we have:
%// Define image, M and N here
%//...
%//...
Apad = padarray(A, floor([M N]/2), 'replicate');
B = arrayfun(#(x) im2col(Apad(:,:,x), [M N]), 1:size(A,3), 'uni', 0);
B = cat(3, B{:});
ind = sub2ind([size(A,1) size(A,2)], y, x);
neigh = B(:,ind,:);
patches = arrayfun(#(x) reshape(neigh(:,x,:), [M N 3]), 1:numel(ind), 'uni', 0);
As unexpected as this may seem, but for me the naive for-loop is actually the fastest. This might depend on your version of MATLAB though, as with newer versions they keep on improving the JIT compiler.
Common data:
A = rand(30, 30, 3); % Image
I = [5,2,3,21,24]; % I = y
J = [3,7,5,20,22]; % J = x
s = 3; % Block size
Naive approach: (faster than im2col and arrayfun!)
Patches = cell(size(I));
steps = -(s-1)/2:(s-1)/2;
for k = 1:numel(Patches);
Patches{k} = A(I(k)+steps, ...
J(k)+steps, ...
:);
end
Approach using arrayfun: (slower than the loop)
steps = -(s-1)/2:(s-1)/2;
Patches = arrayfun(#(ii,jj) A(ii+steps,jj+steps,:), I, J, 'UniformOutput', false);
I am having difficulty with calculating 2D area of contours produced from a Kernel Density Estimation (KDE) in Matlab. I have three variables:
X and Y = meshgrid which variable 'density' is computed over (256x256)
density = density computed from the KDE (256x256)
I run the code
contour(X,Y,density,10)
This produces the plot that is attached. For each of the 10 contour levels I would like to calculate the area. I have done this in some other platforms such as R but am having trouble figuring out the correct method / syntax in Matlab.
C = contourc(density)
I believe the above line would store all of the values of the contours allowing me to calculate the areas but I do not fully understand how these values are stored nor how to get them properly.
This little script will help you. Its general for contour. Probably working for contour3 and contourf as well, with adjustments of course.
[X,Y,Z] = peaks; %example data
% specify certain levels
clevels = [1 2 3];
C = contour(X,Y,Z,clevels);
xdata = C(1,:); %not really useful, in most cases delimters are not clear
ydata = C(2,:); %therefore further steps to determine the actual curves:
%find curves
n(1) = 1; %n: indices where the certain curves start
d(1) = ydata(1); %d: distance to the next index
ii = 1;
while true
n(ii+1) = n(ii)+d(ii)+1; %calculate index of next startpoint
if n(ii+1) > numel(xdata) %breaking condition
n(end) = []; %delete breaking point
break
end
d(ii+1) = ydata(n(ii+1)); %get next distance
ii = ii+1;
end
%which contourlevel to calculate?
value = 2; %must be member of clevels
sel = find(ismember(xdata(n),value));
idx = n(sel); %indices belonging to choice
L = ydata( n(sel) ); %length of curve array
% calculate area and plot all contours of the same level
for ii = 1:numel(idx)
x{ii} = xdata(idx(ii)+1:idx(ii)+L(ii));
y{ii} = ydata(idx(ii)+1:idx(ii)+L(ii));
figure(ii)
patch(x{ii},y{ii},'red'); %just for displaying purposes
%partial areas of all contours of the same plot
areas(ii) = polyarea(x{ii},y{ii});
end
% calculate total area of all contours of same level
totalarea = sum(areas)
Example: peaks (by Matlab)
Level value=2 are the green contours, the first loop gets all contour lines and the second loop calculates the area of all green polygons. Finally sum it up.
If you want to get all total areas of all levels I'd rather write some little functions, than using another loop. You could also consider, to plot just the level you want for each calculation. This way the contourmatrix would be much easier and you could simplify the process. If you don't have multiple shapes, I'd just specify the level with a scalar and use contour to get C for only this level, delete the first value of xdata and ydata and directly calculate the area with polyarea
Here is a similar question I posted regarding the usage of Matlab contour(...) function.
The main ideas is to properly manipulate the return variable. In your example
c = contour(X,Y,density,10)
the variable c can be returned and used for any calculation over the isolines, including area.
Background:
My question relates to extracting feature from an electrophoresis gel (see below). In this gel, DNA is loaded from the top and allowed to migrate under a voltage gradient. The gel has sieves so smaller molecules migrate further than longer molecules resulting in the separation of DNA by length. So higher up the molecule, the longer it is.
Question:
In this image there are 9 lanes each with separate source of DNA. I am interested in measuring the mean location (value on the y axis) of each lane.
I am really new to image processing, but I do know MATLAB and I can get by with R with some difficulty. I would really appreciate it if someone can show me how to go about finding the mean of each lane.
Here's my try. It requires that the gels are nice (i.e. straight lanes and the gel should not be rotated), but should otherwise work fairly generically. Note that there are two image-size-dependent parameters that will need to be adjusted to make this work on images of different size.
%# first size-dependent parameter: should be about 1/4th-1/5th
%# of the lane width in pixels.
minFilterWidth = 10;
%# second size-dependent parameter for filtering the
%# lane profiles
gaussWidth = 5;
%# read the image, normalize to 0...1
img = imread('http://img823.imageshack.us/img823/588/gele.png');
img = rgb2gray(img);
img = double(img)/255;
%# Otsu thresholding to (roughly) find lanes
thMsk = img < graythresh(img);
%# count the mask-pixels in each columns. Due to
%# lane separation, there will be fewer pixels
%# between lanes
cts = sum(thMsk,1);
%# widen the local minima, so that we get a nice
%# separation between lanes
ctsEroded = imerode(cts,ones(1,minFilterWidth));
%# use imregionalmin to identify the separation
%# between lanes. Invert to get a positive mask
laneMsk = ~repmat(imregionalmin(ctsEroded),size(img,1),1);
Image with lanes that will be used for analysis
%# for each lane, create an averaged profile
lblMsk = bwlabel(laneMsk);
nLanes = max(lblMsk(:));
profiles = zeros(size(img,1),nLanes);
midLane = zeros(1,nLanes);
for i = 1:nLanes
profiles(:,i) = mean(img.*(lblMsk==i),2);
midLane(:,i) = mean(find(lblMsk(1,:)==i));
end
%# Gauss-filter the profiles (each column is an
%# averaged intensity profile
G = exp(-(-gaussWidth*5:gaussWidth*5).^2/(2*gaussWidth^2));
G=G./sum(G);
profiles = imfilter(profiles,G','replicate'); %'
%# find the minima
[~,idx] = min(profiles,[],1);
%# plot
figure,imshow(img,[])
hold on, plot(midLane,idx,'.r')
Here's my stab at a simple template for an interactive way to do this:
% Load image
img = imread('gel.png');
img = rgb2gray(img);
% Identify lanes
imshow(img)
[x,y] = ginput;
% Invert image
img = max(img(:)) - img;
% Subtract background
[xn,yn] = ginput(1);
noise = img((yn-2):(yn+2), (xn-2):(xn+2));
noise = mean(noise(:));
img = img - noise;
% Calculate means
means = (1:size(img,1)) * double(img(:,round(x))) ./ sum(double(img(:,round(x))), 1);
% Plot
hold on
plot(x, means, 'r.')
The first thing to do to is convert your RGB image to grayscale:
gr = rgb2gray(imread('gelk.png'));
Then, take a look at the image intensity histogram using imhist. Notice anything funny about it? Use imcontrast(imshow(gr)) to pull up the contrast adjustment tool. I found that eliminating the weird stuff after the major intensity peak was beneficial.
The image processing task itself can be divided into several steps.
Separate each lane
Identify ('segment') the band in each lane
Calculate the location of the bands
Step 1 can be done "by hand," if the lane widths are guaranteed. If not, the line detection offered by the Hough transform is probably the way to go. The documentation on the Image Processing Toolbox has a really nice tutorial on this topic. My code recapitulates that tutorial with better parameters for your image. I only spent a few minutes with them, I'm sure you can improve the results by tuning the parameters further.
Step 2 can be done in a few ways. The easiest technique to use is Otsu's method for thresholding grayscale images. This method works by determining a threshold that minimizes the intra-class variance, or, equivalently, maximizes the inter-class variance. Otsu's method is present in MATLAB as the graythresh function. If Otsu's method isn't working well you can try multi-level Otsu or a number of other histogram based threshold determination methods.
Step 3 can be done as you suggest, by calculating the mean y value of the segmented band pixels. This is what my code does, though I've restricted the check to just the center column of each lane, in case the separation was off. I'm worried that the result may not be as good as calculating the band centroid and using its location.
Here is my solution:
function [locations, lanesBW, lanes, cols] = segmentGel(gr)
%%# Detect lane boundaries
unsharp = fspecial('unsharp'); %# Sharpening filter
I = imfilter(gr,unsharp); %# Apply filter
bw = edge(I,'canny',[0.01 0.3],0.5); %# Canny edges with parameters
[H,T,R] = hough(bw); %# Hough transform of edges
P = houghpeaks(H,20,'threshold',ceil(0.5*max(H(:)))); %# Find peaks of Hough transform
lines = houghlines(bw,T,R,P,'FillGap',30,'MinLength',20); %# Use peaks to identify lines
%%# Plot detected lines above image, for quality control
max_len = 0;
imshow(I);
hold on;
for k = 1:length(lines)
xy = [lines(k).point1; lines(k).point2];
plot(xy(:,1),xy(:,2),'LineWidth',2,'Color','green');
%# Plot beginnings and ends of lines
plot(xy(1,1),xy(1,2),'x','LineWidth',2,'Color','yellow');
plot(xy(2,1),xy(2,2),'x','LineWidth',2,'Color','red');
%# Determine the endpoints of the longest line segment
len = norm(lines(k).point1 - lines(k).point2);
if ( len > max_len)
max_len = len;
end
end
hold off;
%%# Use first endpoint of each line to separate lanes
cols = zeros(length(lines),1);
for k = 1:length(lines)
cols(k) = lines(k).point1(1);
end
cols = sort(cols); %# The lines are in no particular order
lanes = cell(length(cols)-1,1);
for k = 2:length(cols)
lanes{k-1} = im2double( gr(:,cols(k-1):cols(k)) ); %# im2double for compatibility with greythresh
end
otsu = cellfun(#graythresh,lanes); %# Calculate threshold for each lane
lanesBW = cell(size(lanes));
for k = 1:length(lanes)
lanesBW{k} = lanes{k} < otsu(k); %# Apply thresholds
end
%%# Use segmented bands to determine migration distance
locations = zeros(size(lanesBW));
for k = 1:length(lanesBW)
width = size(lanesBW{k},2);
[y,~] = find(lanesBW{k}(:,round(width/2))); %# Only use center of lane
locations(k) = mean(y);
end
I suggest you carefully examine not only each output value, but the results from each step of the function, before using it for actual research purposes. In order to get really good results, you will have to read a bit about Hough transforms, Canny edge detection and Otsu's method, and then tune the parameters. You may also have to alter how the lanes are split; this code assumes that there will be lines detected on either side of the image.
Let me add another implementation similar in concept to that of #JohnColby's, only without the manual user-interaction:
%# read image
I = rgb2gray(imread('gele.png'));
%# middle position of each lane
%# (assuming lanes are somewhat evenly spread and of similar width)
x = linspace(1,size(I,2),10);
x = round( (x(1:end-1)+x(2:end))./2 );
%# compute the mean value across those columns
m = mean(I(:,x));
%# find the y-indices of the mean values
[~,idx] = min( bsxfun(#minus, double(I(:,x)), m) );
%# show the result
figure(1)
imshow(I, 'InitialMagnification',100, 'Border','tight')
hold on, plot(x, idx, ...
'Color','r', 'LineStyle','none', 'Marker','.', 'MarkerSize',10)
and applied on the smaller image:
I am working towards comparing multiple images. I have these image data as column vectors of a matrix called "images." I want to assess the similarity of images by first computing their Eucledian distance. I then want to create a matrix over which I can execute multiple random walks. Right now, my code is as follows:
% clear
% clc
% close all
%
% load tea.mat;
images = Input.X;
M = zeros(size(images, 2), size (images, 2));
for i = 1:size(images, 2)
for j = 1:size(images, 2)
normImageTemp = sqrt((sum((images(:, i) - images(:, j))./256).^2));
%Need to accurately select the value of gamma_i
gamma_i = 1/10;
M(i, j) = exp(-gamma_i.*normImageTemp);
end
end
My matrix M however, ends up having a value of 1 along its main diagonal and zeros elsewhere. I'm expecting "large" values for the first few elements of each row and "small" values for elements with column index > 4. Could someone please explain what is wrong? Any advice is appreciated.
Since you're trying to compute a Euclidean distance, it looks like you have an error in where your parentheses are placed when you compute normImageTemp. You have this:
normImageTemp = sqrt((sum((...)./256).^2));
%# ^--- Note that this parenthesis...
But you actually want to do this:
normImageTemp = sqrt(sum(((...)./256).^2));
%# ^--- ...should be here
In other words, you need to perform the element-wise squaring, then the summation, then the square root. What you are doing now is summing elements first, then squaring and taking the square root of the summation, which essentially cancel each other out (or are actually the equivalent of just taking the absolute value).
Incidentally, you can actually use the function NORM to perform this operation for you, like so:
normImageTemp = norm((images(:, i) - images(:, j))./256);
The results you're getting seem reasonable. Recall the behavior of the exp(-x). When x is zero, exp(-x) is 1. When x is large exp(-x) is zero.
Perhaps if you make M(i,j) = normImageTemp; you'd see what you expect to see.
Consider this solution:
I = Input.X;
D = squareform( pdist(I') ); %'# euclidean distance between columns of I
M = exp(-(1/10) * D); %# similarity matrix between columns of I
PDIST and SQUAREFORM are functions from the Statistics Toolbox.
Otherwise consider this equivalent vectorized code (using only built-in functions):
%# we know that: ||u-v||^2 = ||u||^2 + ||v||^2 - 2*u.v
X = sum(I.^2,1);
D = real( sqrt(bsxfun(#plus,X,X')-2*(I'*I)) );
M = exp(-(1/10) * D);
As was explained in the other answers, D is the distance matrix, while exp(-D) is the similarity matrix (which is why you get ones on the diagonal)
there is an already implemented function pdist, if you have a matrix A, you can directly do
Sim= squareform(pdist(A))