Finding 2D area defined by contour lines in Matlab - matlab

I am having difficulty with calculating 2D area of contours produced from a Kernel Density Estimation (KDE) in Matlab. I have three variables:
X and Y = meshgrid which variable 'density' is computed over (256x256)
density = density computed from the KDE (256x256)
I run the code
contour(X,Y,density,10)
This produces the plot that is attached. For each of the 10 contour levels I would like to calculate the area. I have done this in some other platforms such as R but am having trouble figuring out the correct method / syntax in Matlab.
C = contourc(density)
I believe the above line would store all of the values of the contours allowing me to calculate the areas but I do not fully understand how these values are stored nor how to get them properly.

This little script will help you. Its general for contour. Probably working for contour3 and contourf as well, with adjustments of course.
[X,Y,Z] = peaks; %example data
% specify certain levels
clevels = [1 2 3];
C = contour(X,Y,Z,clevels);
xdata = C(1,:); %not really useful, in most cases delimters are not clear
ydata = C(2,:); %therefore further steps to determine the actual curves:
%find curves
n(1) = 1; %n: indices where the certain curves start
d(1) = ydata(1); %d: distance to the next index
ii = 1;
while true
n(ii+1) = n(ii)+d(ii)+1; %calculate index of next startpoint
if n(ii+1) > numel(xdata) %breaking condition
n(end) = []; %delete breaking point
break
end
d(ii+1) = ydata(n(ii+1)); %get next distance
ii = ii+1;
end
%which contourlevel to calculate?
value = 2; %must be member of clevels
sel = find(ismember(xdata(n),value));
idx = n(sel); %indices belonging to choice
L = ydata( n(sel) ); %length of curve array
% calculate area and plot all contours of the same level
for ii = 1:numel(idx)
x{ii} = xdata(idx(ii)+1:idx(ii)+L(ii));
y{ii} = ydata(idx(ii)+1:idx(ii)+L(ii));
figure(ii)
patch(x{ii},y{ii},'red'); %just for displaying purposes
%partial areas of all contours of the same plot
areas(ii) = polyarea(x{ii},y{ii});
end
% calculate total area of all contours of same level
totalarea = sum(areas)
Example: peaks (by Matlab)
Level value=2 are the green contours, the first loop gets all contour lines and the second loop calculates the area of all green polygons. Finally sum it up.
If you want to get all total areas of all levels I'd rather write some little functions, than using another loop. You could also consider, to plot just the level you want for each calculation. This way the contourmatrix would be much easier and you could simplify the process. If you don't have multiple shapes, I'd just specify the level with a scalar and use contour to get C for only this level, delete the first value of xdata and ydata and directly calculate the area with polyarea

Here is a similar question I posted regarding the usage of Matlab contour(...) function.
The main ideas is to properly manipulate the return variable. In your example
c = contour(X,Y,density,10)
the variable c can be returned and used for any calculation over the isolines, including area.

Related

Fitting largest circle in free area in image with distributed particle

I am working on images to detect and fit the largest possible circle in any of the free areas of an image containing distributed particles:
(able to detect the location of particle).
One direction is to define a circle touching any 3-point combination, checking if the circle is empty, then finding the largest circle among all empty circles. However, it leads to a huge number of combination i.e. C(n,3), where n is the total number of particles in the image.
I would appreciate if anyone can provide me any hint or alternate method that I can explore.
Lets do some maths my friend, as maths will always get to the end!
Wikipedia:
In mathematics, a Voronoi diagram is a partitioning of a plane into
regions based on distance to points in a specific subset of the plane.
For example:
rng(1)
x=rand(1,100)*5;
y=rand(1,100)*5;
voronoi(x,y);
The nice thing about this diagram is that if you notice, all the edges/vertices of those blue areas are all to equal distance to the points around them. Thus, if we know the location of the vertices, and compute the distances to the closest points, then we can choose the vertex with highest distance as our center of the circle.
Interestingly, the edges of a Voronoi regions are also defined as the circumcenters of the triangles generated by a Delaunay triangulation.
So if we compute the Delaunay triangulation of the area, and their circumcenters
dt=delaunayTriangulation([x;y].');
cc=circumcenter(dt); %voronoi edges
And compute the distances between the circumcenters and any of the points that define each triangle:
for ii=1:size(cc,1)
if cc(ii,1)>0 && cc(ii,1)<5 && cc(ii,2)>0 && cc(ii,2)<5
point=dt.Points(dt.ConnectivityList(ii,1),:); %the first one, or any other (they are the same distance)
distance(ii)=sqrt((cc(ii,1)-point(1)).^2+(cc(ii,2)-point(2)).^2);
end
end
Then we have the center (cc) and radius (distance) of all possible circles that have no point inside them. We just need the biggest one!
[r,ind]=max(distance); %Tada!
Now lets plot
hold on
ang=0:0.01:2*pi;
xp=r*cos(ang);
yp=r*sin(ang);
point=cc(ind,:);
voronoi(x,y)
triplot(dt,'color','r','linestyle',':')
plot(point(1)+xp,point(2)+yp,'k');
plot(point(1),point(2),'g.','markersize',20);
Notice how the center of the circle is on one vertex of the Voronoi diagram.
NOTE: this will find the center inside [0-5],[0-5]. you can easily modify it to change this constrain. You can also try to find the circle that fits on its entirety inside the interested area (as opposed to just the center). This would require a small addition in the end where the maximum is obtained.
I'd like to propose another solution based on a grid search with refinement. It's not as advanced as Ander's or as short as rahnema1's, but it should be very easy to follow and understand. Also, it runs quite fast.
The algorithm contains several stages:
We generate an evenly-spaced grid.
We find the minimal distances of points in the grid to all provided points.
We discard all points whose distances are below a certain percentile (e.g. 95th).
We choose the region which contains the largest distance (this should contain the correct center if my initial grid is fine enough).
We create a new meshgrid around the chosen region and find distances again (this part is clearly sub-optimal, because the distances are computed to all points, including far and irrelevant ones).
We iterate the refinement within the region, while keeping an eye on the variance of the top 5% of values -> if it drops below some preset threshold we break.
Several notes:
I have made the assumption that circles cannot go beyond the scattered points' extent (i.e. the bounding square of the scatter acts as an "invisible wall").
The appropriate percentile depends on how fine the initial grid is. This will also affect the amount of while iterations, and the optimal initial value for cnt.
function [xBest,yBest,R] = q42806059
rng(1)
x=rand(1,100)*5;
y=rand(1,100)*5;
%% Find the approximate region(s) where there exists a point farthest from all the rest:
xExtent = linspace(min(x),max(x),numel(x));
yExtent = linspace(min(y),max(y),numel(y)).';
% Create a grid:
[XX,YY] = meshgrid(xExtent,yExtent);
% Compute pairwise distance from grid points to free points:
D = reshape(min(pdist2([XX(:),YY(:)],[x(:),y(:)]),[],2),size(XX));
% Intermediate plot:
% figure(); plot(x,y,'.k'); hold on; contour(XX,YY,D); axis square; grid on;
% Remove irrelevant candidates:
D(D<prctile(D(:),95)) = NaN;
D(D > xExtent | D > yExtent | D > yExtent(end)-yExtent | D > xExtent(end)-xExtent) = NaN;
%% Keep only the region with the largest distance
L = bwlabel(~isnan(D));
[~,I] = max(table2array(regionprops('table',L,D,'MaxIntensity')));
D(L~=I) = NaN;
% surf(XX,YY,D,'EdgeColor','interp','FaceColor','interp');
%% Iterate until sufficient precision:
xExtent = xExtent(~isnan(min(D,[],1,'omitnan')));
yExtent = yExtent(~isnan(min(D,[],2,'omitnan')));
cnt = 1; % increase or decrease according to the nature of the problem
while true
% Same ideas as above, so no explanations:
xExtent = linspace(xExtent(1),xExtent(end),20);
yExtent = linspace(yExtent(1),yExtent(end),20).';
[XX,YY] = meshgrid(xExtent,yExtent);
D = reshape(min(pdist2([XX(:),YY(:)],[x(:),y(:)]),[],2),size(XX));
D(D<prctile(D(:),95)) = NaN;
I = find(D == max(D(:)));
xBest = XX(I);
yBest = YY(I);
if nanvar(D(:)) < 1E-10 || cnt == 10
R = D(I);
break
end
xExtent = (1+[-1 +1]*10^-cnt)*xBest;
yExtent = (1+[-1 +1]*10^-cnt)*yBest;
cnt = cnt+1;
end
% Finally:
% rectangle('Position',[xBest-R,yBest-R,2*R,2*R],'Curvature',[1 1],'EdgeColor','r');
The result I'm getting for Ander's example data is [x,y,r] = [0.7832, 2.0694, 0.7815] (which is the same). The execution time is about half of Ander's solution.
Here are the intermediate plots:
Contour of the largest (clear) distance from a point to the set of all provided points:
After considering distance from the boundary, keeping only the top 5% of distant points, and considering only the region which contains the largest distance (the piece of surface represents the kept values):
And finally:
You can use bwdist from Image Processing Toolbox to compute the distance transform of the image. This can be regarded as a method to create voronoi diagram that well explained in #AnderBiguri's answer.
img = imread('AbmxL.jpg');
%convert the image to a binary image
points = img(:,:,3)<200;
%compute the distance transform of the binary image
dist = bwdist(points);
%find the circle that has maximum radius
radius = max(dist(:));
%find position of the circle
[x y] = find(dist == radius);
imshow(dist,[]);
hold on
plot(y,x,'ro');
The fact that this problem can be solved using a "direct search" (as can be seen in another answer) means one can look at this as a global optimization problem. There exist various ways to solve such problems, each appropriate for certain scenarios. Out of my personal curiosity I have decided to solve this using a genetic algorithm.
Generally speaking, such an algorithm requires us to think of the solution as a set of "genes" subject to "evolution" under a certain "fitness function". As it happens, it's quite easy to identify the genes and the fitness function in this problem:
Genes: x , y, r.
Fitness function: technically, maximum area of circle, but this is equivalent to the maximum r (or minimum -r, since the algorithm requires a function to minimize).
Special constraint - if r is larger than the euclidean distance to the closest of the provided points (that is, the circle contains a point), the organism "dies".
Below is a basic implementation of such an algorithm ("basic" because it's completely unoptimized, and there is lot of room for optimizationno pun intended in this problem).
function [x,y,r] = q42806059b(cloudOfPoints)
% Problem setup
if nargin == 0
rng(1)
cloudOfPoints = rand(100,2)*5; % equivalent to Ander's initialization.
end
%{
figure(); plot(cloudOfPoints(:,1),cloudOfPoints(:,2),'.w'); hold on; axis square;
set(gca,'Color','k'); plot(0.7832,2.0694,'ro'); plot(0.7832,2.0694,'r*');
%}
nVariables = 3;
options = optimoptions(#ga,'UseVectorized',true,'CreationFcn',#gacreationuniform,...
'PopulationSize',1000);
S = max(cloudOfPoints,[],1); L = min(cloudOfPoints,[],1); % Find geometric bounds:
% In R2017a: use [S,L] = bounds(cloudOfPoints,1);
% Here we also define distance-from-boundary constraints.
g = ga(#(g)vectorized_fitness(g,cloudOfPoints,[L;S]), nVariables,...
[],[], [],[], [L 0],[S min(S-L)], [], options);
x = g(1); y = g(2); r = g(3);
%{
plot(x,y,'ro'); plot(x,y,'r*');
rectangle('Position',[x-r,y-r,2*r,2*r],'Curvature',[1 1],'EdgeColor','r');
%}
function f = vectorized_fitness(genes,pts,extent)
% genes = [x,y,r]
% extent = [Xmin Ymin; Xmax Ymax]
% f, the fitness, is the largest radius.
f = min(pdist2(genes(:,1:2), pts, 'euclidean'), [], 2);
% Instant death if circle contains a point:
f( f < genes(:,3) ) = Inf;
% Instant death if circle is too close to boundary:
f( any( genes(:,3) > genes(:,1:2) - extent(1,:) | ...
genes(:,3) > extent(2,:) - genes(:,1:2), 2) ) = Inf;
% Note: this condition may possibly be specified using the A,b inputs of ga().
f(isfinite(f)) = -genes(isfinite(f),3);
%DEBUG:
%{
scatter(genes(:,1),genes(:,2),10 ,[0, .447, .741] ,'o'); % All
z = ~isfinite(f); scatter(genes(z,1),genes(z,2),30,'r','x'); % Killed
z = isfinite(f); scatter(genes(z,1),genes(z,2),30,'g','h'); % Surviving
[~,I] = sort(f); scatter(genes(I(1:5),1),genes(I(1:5),2),30,'y','p'); % Elite
%}
And here's a "time-lapse" plot of 47 generations of a typical run:
(Where blue points are the current generation, red crosses are "insta-killed" organisms, green hexagrams are the "non-insta-killed" organisms, and the red circle marks the destination).
I'm not used to image processing, so it's just an Idea:
Implement something like a gaussian filter (blur) which transforms each particle (pixels) to a round gradiant with r=image_size (all of them overlapping). This way, you should get a picture where the most white pixels should be the best results. Unfortunately, the demonstration in gimp failed because the extreme blurring made the dots disappearing.
Alternatively, you could incrementelly extend all existing pixels by marking all neighbour pixels in an area (example: r=4), the pixels left would be the same result (those with the biggest distance to any pixel)

Matlab fill matrix with certain value between two lines (Bresenham)

For a school project we need to determine any sort of damage on a carbon fiber sheet with eight metal pins. To determine the damage we use resistivity measurements between multiple points.
We us a Matlab script to make the resistance between points visible. We plot the values in a matrix and create a line with the Bresenham function.
for x = 1:8
S1_(x) = 0;
end
p1 = [150 1];
p2 = [(150+150*sind(45)) (150-150*cosd(45))];
p3 = [300 150];
m1 = zeros(300);
m2 = zeros(300);
[x1_1,y1_1] = bresenham(p1(1),p1(2),p2(1),p2(2));
m1(sub2ind(size(m1), y1_1, x1_1)) = S1_(1);
[x1_1,y1_2] = bresenham(p1(1),p1(2),p3(1),p3(2));
m2(sub2ind(size(m2), y1_2, x1_1)) = S1_(2);
mP1=m1+m2;
The problem is as follows:
The Bresenham function does create the lines in the matrix, but we are searching for a function too fill the matrix between two lines with the average of those two lines combined. The average of S1_(1) and S1_(2) need to fill the matrix between line x1_1,y1_1 and x1_1,y1_2. The final plot is where all the points are drawn, when all areas between the lines are filled this should create a high top somewhere in the circle:
Could someone help me solving this problem?
UPDATE:
We finally got it working, we call a function to create a triangular matrix and add up all those matrices.

multiple matlab contour plots with one level

I have a number of 2d probability mass functions from 2 categories. I am trying to plot the contours to visualise them (for example at their half height, but doesn't really matter).
I don't want to use contourf to plot directly because I want to control the fill colour and opacity. So I am using contourc to generate xy coordinates, and am then using fill with these xy coordinates.
The problem is that the xy coordinates from the contourc function have strange numbers in them which cause the following strange vertices to be plotted.
At first I thought it was the odd contourmatrix format, but I don't think it is this as I am only asking for one value from contourc. For example...
contourmatrix = contourc(x, y, Z, [val, val]);
h = fill(contourmatrix(1,:), contourmatrix(2,:), 'r');
Does anyone know why the contourmatrix has these odd values in them when I am only asking for one contour?
UPDATE:
My problem seems might be a failure mode of contourc when the input 2D matrix is not 'smooth'. My source data is a large set of (x,y) points. Then I create a 2D matrix with some hist2d function. But when this is noisy the problem is exaggerated...
But when I use a 2d kernel density function to result in a much smoother 2D function, the problem is lessened...
The full process is
a) I have a set of (x,y) points which form samples from a distribution
b) I convert this into a 2D pmf
c) create a contourmatrix using contourc
d) plot using fill
Your graphic glitches are because of the way you use the data from the ContourMatrix. Even if you specify only one isolevel, this can result in several distinct filled area. So the ContourMatrix may contain data for several shapes.
simple example:
isolevel = 2 ;
[X,Y,Z] = peaks ;
[C,h] = contourf(X,Y,Z,[isolevel,isolevel]);
Produces:
Note that even if you specified only one isolevel to be drawn, this will result in 2 patches (2 shapes). Each has its own definition but they are both embedded in the ContourMatrix, so you have to parse it if you want to extract each shape coordinates individually.
To prove the point, if I simply throw the full contour matrix to the patch function (the fill function will create patch objects anyway so I prefer to use the low level function when practical). I get the same glitch lines as you do:
xc = X(1,:) ;
yc = Y(:,1) ;
c = contourc(xc,yc,Z,[isolevel,isolevel]);
hold on
hp = patch(c(1,1:end),c(2,1:end),'r','LineWidth',2) ;
produces the same kind of glitches that you have:
Now if you properly extract each shape coordinates without including the definition column, you get the proper shapes. The example below is one way to extract and draw each shape for inspiration but they are many ways to do it differently. You can certainly compact the code a lot but here I detailed the operations for clarity.
The key is to read and understand how the ContourMatrix is build.
parsed = false ;
iShape = 1 ;
while ~parsed
%// get coordinates for each isolevel profile
level = c(1,1) ; %// current isolevel
nPoints = c(2,1) ; %// number of coordinate points for this shape
idx = 2:nPoints+1 ; %// prepare the column indices of this shape coordinates
xp = c(1,idx) ; %// retrieve shape x-values
yp = c(2,idx) ; %// retrieve shape y-values
hp(iShape) = patch(xp,yp,'y','FaceAlpha',0.5) ; %// generate path object and save handle for future shape control.
if size(c,2) > (nPoints+1)
%// There is another shape to draw
c(:,1:nPoints+1) = [] ; %// remove processed points from the contour matrix
iShape = iShape+1 ; %// increment shape counter
else
%// we are done => exit while loop
parsed = true ;
end
end
grid on
This will produce:

Only plot lines of specific length

Below is an image showing a contour plot with areas of interest that have have been connected up by using their centroids. What I want to achieve is that only lines of a certain length are plotted. Currently, every point has a line drawn to every other point.
C=contourf(K{i});
[Area,Centroid] = Contour2Area(C);
% This converts any entries that are negative into a positive value
% of the same magnitiude
indices{i} = find( Centroid < 0);
Centroid(indices{i})=Centroid(indices{i}) * -1; %set all
% Does the same but for positive (+500)
indices{i} = find( Area > 500);
Area(indices{i})=0;
[sortedAreaVal, sortedAreaInd] = sort(Area, 'descend');
maxAreaVals = sortedAreaVal(1:10)';
maxAreaInd = sortedAreaInd(1:10)';
xc=Centroid(1,:); yc=Centroid(2,:);
hold on; plot(xc,yc,'-');
It would be very useful if there was a way of only plotting the lines that fall below a specific threshold. The next step will be to label and measure each line. Thanks in advance for your time.
If xc and yc are the x and y coordinates of the centroids, then you could do something like this:
sqrt(sum(diff([x,y],1).^2,2))
What this does is take the difference between successive [x,y] data points, then calculate the Euclidean distance between them. You then have all the information you need to select the ones you want and label the lengths.
One thing though, this will only compute distances between successive centroids. I wrote it this way because it appears that's what you're trying to do above. If you are interested in finding out the distances between all centroids, you would have to loop through and compute the distances.
Something along the lines of:
for i=1:length(xc)-1
for j=i+1:length(xc)
% distance calculation here...
Hope this helps.

How to fit a curve by a series of segmented lines in Matlab?

I have a simple loglog curve as above. Is there some function in Matlab which can fit this curve by segmented lines and show the starting and end points of these line segments ? I have checked the curve fitting toolbox in matlab. They seems to do curve fitting by either one line or some functions. I do not want to curve fitting by one line only.
If there is no direct function, any alternative to achieve the same goal is fine with me. My goal is to fit the curve by segmented lines and get locations of the end points of these segments .
First of all, your problem is not called curve fitting. Curve fitting is when you have data, and you find the best function that describes it, in some sense. You, on the other hand, want to create a piecewise linear approximation of your function.
I suggest the following strategy:
Split manually into sections. The section size should depend on the derivative, large derivative -> small section
Sample the function at the nodes between the sections
Find a linear interpolation that passes through the points mentioned above.
Here is an example of a code that does that. You can see that the red line (interpolation) is very close to the original function, despite the small amount of sections. This happens due to the adaptive section size.
function fitLogLog()
x = 2:1000;
y = log(log(x));
%# Find section sizes, by using an inverse of the approximation of the derivative
numOfSections = 20;
indexes = round(linspace(1,numel(y),numOfSections));
derivativeApprox = diff(y(indexes));
inverseDerivative = 1./derivativeApprox;
weightOfSection = inverseDerivative/sum(inverseDerivative);
totalRange = max(x(:))-min(x(:));
sectionSize = weightOfSection.* totalRange;
%# The relevant nodes
xNodes = x(1) + [ 0 cumsum(sectionSize)];
yNodes = log(log(xNodes));
figure;plot(x,y);
hold on;
plot (xNodes,yNodes,'r');
scatter (xNodes,yNodes,'r');
legend('log(log(x))','adaptive linear interpolation');
end
Andrey's adaptive solution provides a more accurate overall fit. If what you want is segments of a fixed length, however, then here is something that should work, using a method that also returns a complete set of all the fitted values. Could be vectorized if speed is needed.
Nsamp = 1000; %number of data samples on x-axis
x = [1:Nsamp]; %this is your x-axis
Nlines = 5; %number of lines to fit
fx = exp(-10*x/Nsamp); %generate something like your current data, f(x)
gx = NaN(size(fx)); %this will hold your fitted lines, g(x)
joins = round(linspace(1, Nsamp, Nlines+1)); %define equally spaced breaks along the x-axis
dx = diff(x(joins)); %x-change
df = diff(fx(joins)); %f(x)-change
m = df./dx; %gradient for each section
for i = 1:Nlines
x1 = joins(i); %start point
x2 = joins(i+1); %end point
gx(x1:x2) = fx(x1) + m(i)*(0:dx(i)); %compute line segment
end
subplot(2,1,1)
h(1,:) = plot(x, fx, 'b', x, gx, 'k', joins, gx(joins), 'ro');
title('Normal Plot')
subplot(2,1,2)
h(2,:) = loglog(x, fx, 'b', x, gx, 'k', joins, gx(joins), 'ro');
title('Log Log Plot')
for ip = 1:2
subplot(2,1,ip)
set(h(ip,:), 'LineWidth', 2)
legend('Data', 'Piecewise Linear', 'Location', 'NorthEastOutside')
legend boxoff
end
This is not an exact answer to this question, but since I arrived here based on a search, I'd like to answer the related question of how to create (not fit) a piecewise linear function that is intended to represent the mean (or median, or some other other function) of interval data in a scatter plot.
First, a related but more sophisticated alternative using regression, which apparently has some MATLAB code listed on the wikipedia page, is Multivariate adaptive regression splines.
The solution here is to just calculate the mean on overlapping intervals to get points
function [x, y] = intervalAggregate(Xdata, Ydata, aggFun, intStep, intOverlap)
% intOverlap in [0, 1); 0 for no overlap of intervals, etc.
% intStep this is the size of the interval being aggregated.
minX = min(Xdata);
maxX = max(Xdata);
minY = min(Ydata);
maxY = max(Ydata);
intInc = intOverlap*intStep; %How far we advance each iteraction.
if intOverlap <= 0
intInc = intStep;
end
nInt = ceil((maxX-minX)/intInc); %Number of aggregations
parfor i = 1:nInt
xStart = minX + (i-1)*intInc;
xEnd = xStart + intStep;
intervalIndices = find((Xdata >= xStart) & (Xdata <= xEnd));
x(i) = aggFun(Xdata(intervalIndices));
y(i) = aggFun(Ydata(intervalIndices));
end
For instance, to calculate the mean over some paired X and Y data I had handy with intervals of length 0.1 having roughly 1/3 overlap with each other (see scatter image):
[x,y] = intervalAggregate(Xdat, Ydat, #mean, 0.1, 0.333)
x =
Columns 1 through 8
0.0552 0.0868 0.1170 0.1475 0.1844 0.2173 0.2498 0.2834
Columns 9 through 15
0.3182 0.3561 0.3875 0.4178 0.4494 0.4671 0.4822
y =
Columns 1 through 8
0.9992 0.9983 0.9971 0.9955 0.9927 0.9905 0.9876 0.9846
Columns 9 through 15
0.9803 0.9750 0.9707 0.9653 0.9598 0.9560 0.9537
We see that as x increases, y tends to decrease slightly. From there, it is easy enough to draw line segments and/or perform some other kind of smoothing.
(Note that I did not attempt to vectorize this solution; a much faster version could be assumed if Xdata is sorted.)