Does Scala have introspection capable of something similar to Python's dir()? - scala

Yes, I know it's considered lazy by the non-Pythonistas. The reason I ask is that documentation is still woefully lacking in many Scala libraries (e.g. Scala-dbc, but that's not all I'm looking at), and if I could see the attributes of an object/class at runtime, I could at least figure out what's available. Thanks.

Scala does not have a reflection API. The only way to access this information is to use the Java reflection API. This has the disadvantage that the structure may change as the way Scala is represented in Java classes and interfaces may change in the future.
scala> classOf[AnyRef].getMethods
res0: Array[java.lang.reflect.Method] = Array(public final void ...
Some specific type information that is present in the byte code can be accessed with the ScalaSigParser.
import tools.scalap.scalax.rules.scalasig._
import scala.runtime._
val scalaSig = ScalaSigParser.parse(classOf[RichDouble])

That's one of my main uses for REPL. Type the object's name, dot, and then TAB and it will show all available methods.
It isn't perfect. For one thing, it shows protected methods, which won't be available unless you are extending the class. For another thing, it doesn't show methods available through implicit conversion.
And, of course, the IDEs are all capable of doing that.

You might want something like the following which would give you what you need. In this case, it operates on a String, obviously.
val testStr = "Panda"
testStr.getClass.getMethods.foreach(println)
Does that work?

You may want to use this little helper to beef up the REPL

Related

How to find max date from stream in scala using CompareTo?

I am new to Scala and trying to explore how I can use Java functionalities with Scala.
I am having stream of LocalDate which is a Java class and I am trying to find maximum date out of my list.
var processedResult : Stream[LocalDate] =List(javaList)
.toStream
.map { s => {
//some processing
LocalDate.parse(str, formatter)
}
}
I know we can do easily by using .compare() and .compareTo() in Java but I am not sure how do I use the same thing over here.
Also, I have no idea how Ordering works in Scala when it comes to sorting.
Can anyone suggest how can get this done?
First of all, a lot of minor details that I will point out since it seems you are pretty new to the language and I expect those to help you with your learning path.
First, avoid var at all costs, especially when learning.
While mutability has its place and is not always wrong, forcing you to avoid it while learning will help you. Particularly, avoid it when it doesn't provide any value; like in this case.
Second, this List(javaList) doesn't do what you think it does. It creates a single element Scala List whose unique element is a Java List. What you probably want is to transform that Java List into a Scala one, for that you can use the CollectionConverters.
import scala.jdk.CollectionConverters._ // This works if you are in 2.13
// if you are in 2.12 or lower use: import scala.collection.JavaConverters._
val scalaList = javaList.asScala.toList
Third, not sure why you want to use a Scala Stream, a Stream is for infinite or very large collections where you want all the transformations to be made lazily and only produce elements as they are consumed (also, btw, it was deprecated in 2.13 in favour of LazyList).
Maybe, you are confused because in Java you need a "Stream" to apply functional operations like map? If so, note that in Scala all collections provide the same rich API.
Fourth, Ordering is a Typeclass which is a functional pattern for Polymorphism. On its own, this is a very broad question so I won't answer it here, but I hope the two links provide insight.
The TL;DR; is simple, it is just that an Ordering for a type T knows how to order (sort) elements of type T. Thus operations like max will work for any collection of any type if, and only if, the compiler can prove the existence of an Ordering for that type if it can then it will pass such value implicitly to the method call for you; again the implicits topic is very broad and deserves its own question.
Now for your particular question, you can just call max or maxOption in the List or Stream and that is all.
Note that max will throw if the List is empty, whereas maxOption returns an Option which will be empty (None) for an empty input; idiomatic Scala favour the latter over the former.
If you really want to use compareTo then you can provide your own Ordering.
scalaList.maxOption(Ordering.fromLessThan[LocalDate]((d1, d2) => d1.compareTo(d2) < 0))
Ordering[A] is a type class which defines how to compare 2 elements of type A. So to compare LocalDates you need Ordering[LocalDate] instance.
LocalDate extends Comparable in Java and Scala conveniently provides instances for Comparables so when you invoke:
Ordering[java.time.LocalDate]
in REPL you'll see that Scala is able to provide you the instance without you needing to do anything (you could take a look at the list of methods provided by this typeclass).
Since you have and Ordering in implicit scope which types matches the Stream's type (e.g. Stream[LocalDate] needs Ordering[LocalDate]) you can call .max method... and that's it.
val processedResult : Stream[LocalDate] = ...
val newestDate: LocalDate = processedResult.max

Scala: when to use explicit type annotations

I've been reading a lot of other people's Scala code recently, and one of the things that I have difficultly with (coming from Java) is a lack of explicit type annotations.
It's certainly convenient when writing code to be able to leave out type annotations -- however when reading code I often find that explicit type annotations help me to understand at a glance what code is doing more easily.
The Scala style guide (http://docs.scala-lang.org/style/types.html) doesn't seem to provide any definitive guidance on this, stating:
Use type inference where possible, but put clarity first, and favour explicitness in public APIs.
To my mind, this is a bit contradictory. While it's clearly obvious what type this variable is:
val tokens = new HashMap[String, Int]
It's not so obvious what type this one is:
val tokens = readTokens()
So, if I was putting clarity first I would probably annotate all variables where the type is not already declared on the same line.
Do any Scala practitioners have guidance on this? Am I crazy to be considering adding type annotations to my local variables? I'm particularly interested in hearing from folks who spend a lot of time reading scala code (for example, in code reviews), as well as writing it.
It's not so obvious what type this one is:
val tokens = readTokens()
Good names are important: the name is plural, ergo it returns some collection of some kind. The most general collection types in Scala are Traversable and Iterator, and they mostly share a common interface, so it's not really important which one of the two it is. The name also talks about "reading tokens", ergo it obviously should return Tokens in some fashion. And last but not least, the method call has parentheses, which according to the style guide means it has side-effects, so I wouldn't count on being able to traverse the collection more than once.
Ergo, the return type is something like
Traversable[Token]
or
Iterator[Token]
and which of the two it is doesn't really matter because their client interfaces are mostly identical.
Note also that the latter constraint (only traversing the collection once) isn't even captured in the type, even if you were providing an explicit type, you would still have to look at the name and the style!

Is it possible to achieve functionality provided by implicit classes via macros?

We are pretty familiar with implicits in Scala for now, but macros are pretty undiscovered area (at least for me) and, despite the presence of some great articles by Eugene Burmako, it is still not an easy material to just dive in.
In this particular question I'd like to find out if there is a possibility to achieve the analogous to the following code functionality using just macros:
implicit class Nonsense(val s: String) {
def ##(i:Int) = s.charAt(i)
}
So "asd" ## 0 will return 'a', for example. Can I implement macros that use infix notation? The reason to this is I'm writing a DSL for some already existing project and implicits allow making the API clear and concise, but whenever I write a new implicit class, I feel like introducing a new speed-reducing factor. And yes, I do know about value classes and stuff, I just think it would be really great if my DSL transformed into the underlying library API calls during compilation rather than in runtime.
TL;DR: can I replace implicits with macros while not changing the API? Can I write macros in infix form? Is there something even more suitable for this case? Is the trouble worth it?
UPD. To those advocating the value classes: in my case I have a little more than just a simple wrapper - they are often stacked. For example, I have an implicit class that takes some parameters, returns a lambda wrapping this parameters (i.e. partial function), and the second implicit class that is made specifically for wrapping this type of functions. I can achieve something like this:
a --> x ==> b
where first class wraps a and adds --> method, and the second one wraps the return type of a --> x and defines ==>(b). Plus it may really be the case when user creates considerable amount of objects in this fashion. I just don't know if this will be efficient, so if you could tell me that value classes cover this case - I'd be really glad to know that.
Back in the day (2.10.0-RC1) I had trouble using implicit classes for macros (sorry, I don't recollect why exactly) but the solution was to use:
an implicit def macro to convert to a class
define the infix operator as a def macro in that class
So something like the following might work for you:
implicit def toNonsense(s:String): Nonsense = macro ...
...
class Nonsense(...){
...
def ##(...):... = macro ...
...
}
That was pretty painful to implement. That being said, macro have become easier to implement since.
If you want to check what I did, because I'm not sure that applies to what you want to do, refer to this excerpt of my code (non-idiomatic style).
I won't address the relevance of that here, as it's been commented by others.

What does the "extends {..}" clause in Scala object definition, without superclass name, do?

I found this code example in Programming in Scala, 2nd Ed. (Chapter 25, Listing 25.11):
object PrefixMap extends {
def empty[T] = ...
def apply[T](kvs: (String, T)*): PrefixMap[T] = ...
...
}
Why is the extends clause there without a superclass name? It looks like extending an anonymous class, but for what purpose? The accompanying text doesn't explain or even mention this construct anywhere. The code actually compiles and apparently works perfectly with or without it.
OTOH I found the exact same code on several web pages, including this (which looks like the original version of the chapter in the book). I doubt that a typo could have passed below the radars of so many readers up to now... so am I missing something?
I tried to google it, but struggled even to find proper search terms for it. So could someone explain whether this construct has a name and/or practical use in Scala?
Looks like a print error to me. It will work all the same, though, which probably helped hide it all this time.
Anyway, that object is extending a structural type, though it could also be an early initialization, if you had with XXX at the end. MMmmm. It looks more like an early initialization without any class or trait to be initialized later, actually... structure types do not contain code, I think.

Scala Case Class Map Expansion

In groovy one can do:
class Foo {
Integer a,b
}
Map map = [a:1,b:2]
def foo = new Foo(map) // map expanded, object created
I understand that Scala is not in any sense of the word, Groovy, but am wondering if map expansion in this context is supported
Simplistically, I tried and failed with:
case class Foo(a:Int, b:Int)
val map = Map("a"-> 1, "b"-> 2)
Foo(map: _*) // no dice, always applied to first property
A related thread that shows possible solutions to the problem.
Now, from what I've been able to dig up, as of Scala 2.9.1 at least, reflection in regard to case classes is basically a no-op. The net effect then appears to be that one is forced into some form of manual object creation, which, given the power of Scala, is somewhat ironic.
I should mention that the use case involves the servlet request parameters map. Specifically, using Lift, Play, Spray, Scalatra, etc., I would like to take the sanitized params map (filtered via routing layer) and bind it to a target case class instance without needing to manually create the object, nor specify its types. This would require "reliable" reflection and implicits like "str2Date" to handle type conversion errors.
Perhaps in 2.10 with the new reflection library, implementing the above will be cake. Only 2 months into Scala, so just scratching the surface; I do not see any straightforward way to pull this off right now (for seasoned Scala developers, maybe doable)
Well, the good news is that Scala's Product interface, implemented by all case classes, actually doesn't make this very hard to do. I'm the author of a Scala serialization library called Salat that supplies some utilities for using pickled Scala signatures to get typed field information
https://github.com/novus/salat - check out some of the utilities in the salat-util package.
Actually, I think this is something that Salat should do - what a good idea.
Re: D.C. Sobral's point about the impossibility of verifying params at compile time - point taken, but in practice this should work at runtime just like deserializing anything else with no guarantees about structure, like JSON or a Mongo DBObject. Also, Salat has utilities to leverage default args where supplied.
This is not possible, because it is impossible to verify at compile time that all parameters were passed in that map.