Scala Case Class Map Expansion - scala

In groovy one can do:
class Foo {
Integer a,b
}
Map map = [a:1,b:2]
def foo = new Foo(map) // map expanded, object created
I understand that Scala is not in any sense of the word, Groovy, but am wondering if map expansion in this context is supported
Simplistically, I tried and failed with:
case class Foo(a:Int, b:Int)
val map = Map("a"-> 1, "b"-> 2)
Foo(map: _*) // no dice, always applied to first property
A related thread that shows possible solutions to the problem.
Now, from what I've been able to dig up, as of Scala 2.9.1 at least, reflection in regard to case classes is basically a no-op. The net effect then appears to be that one is forced into some form of manual object creation, which, given the power of Scala, is somewhat ironic.
I should mention that the use case involves the servlet request parameters map. Specifically, using Lift, Play, Spray, Scalatra, etc., I would like to take the sanitized params map (filtered via routing layer) and bind it to a target case class instance without needing to manually create the object, nor specify its types. This would require "reliable" reflection and implicits like "str2Date" to handle type conversion errors.
Perhaps in 2.10 with the new reflection library, implementing the above will be cake. Only 2 months into Scala, so just scratching the surface; I do not see any straightforward way to pull this off right now (for seasoned Scala developers, maybe doable)

Well, the good news is that Scala's Product interface, implemented by all case classes, actually doesn't make this very hard to do. I'm the author of a Scala serialization library called Salat that supplies some utilities for using pickled Scala signatures to get typed field information
https://github.com/novus/salat - check out some of the utilities in the salat-util package.
Actually, I think this is something that Salat should do - what a good idea.
Re: D.C. Sobral's point about the impossibility of verifying params at compile time - point taken, but in practice this should work at runtime just like deserializing anything else with no guarantees about structure, like JSON or a Mongo DBObject. Also, Salat has utilities to leverage default args where supplied.

This is not possible, because it is impossible to verify at compile time that all parameters were passed in that map.

Related

How to find max date from stream in scala using CompareTo?

I am new to Scala and trying to explore how I can use Java functionalities with Scala.
I am having stream of LocalDate which is a Java class and I am trying to find maximum date out of my list.
var processedResult : Stream[LocalDate] =List(javaList)
.toStream
.map { s => {
//some processing
LocalDate.parse(str, formatter)
}
}
I know we can do easily by using .compare() and .compareTo() in Java but I am not sure how do I use the same thing over here.
Also, I have no idea how Ordering works in Scala when it comes to sorting.
Can anyone suggest how can get this done?
First of all, a lot of minor details that I will point out since it seems you are pretty new to the language and I expect those to help you with your learning path.
First, avoid var at all costs, especially when learning.
While mutability has its place and is not always wrong, forcing you to avoid it while learning will help you. Particularly, avoid it when it doesn't provide any value; like in this case.
Second, this List(javaList) doesn't do what you think it does. It creates a single element Scala List whose unique element is a Java List. What you probably want is to transform that Java List into a Scala one, for that you can use the CollectionConverters.
import scala.jdk.CollectionConverters._ // This works if you are in 2.13
// if you are in 2.12 or lower use: import scala.collection.JavaConverters._
val scalaList = javaList.asScala.toList
Third, not sure why you want to use a Scala Stream, a Stream is for infinite or very large collections where you want all the transformations to be made lazily and only produce elements as they are consumed (also, btw, it was deprecated in 2.13 in favour of LazyList).
Maybe, you are confused because in Java you need a "Stream" to apply functional operations like map? If so, note that in Scala all collections provide the same rich API.
Fourth, Ordering is a Typeclass which is a functional pattern for Polymorphism. On its own, this is a very broad question so I won't answer it here, but I hope the two links provide insight.
The TL;DR; is simple, it is just that an Ordering for a type T knows how to order (sort) elements of type T. Thus operations like max will work for any collection of any type if, and only if, the compiler can prove the existence of an Ordering for that type if it can then it will pass such value implicitly to the method call for you; again the implicits topic is very broad and deserves its own question.
Now for your particular question, you can just call max or maxOption in the List or Stream and that is all.
Note that max will throw if the List is empty, whereas maxOption returns an Option which will be empty (None) for an empty input; idiomatic Scala favour the latter over the former.
If you really want to use compareTo then you can provide your own Ordering.
scalaList.maxOption(Ordering.fromLessThan[LocalDate]((d1, d2) => d1.compareTo(d2) < 0))
Ordering[A] is a type class which defines how to compare 2 elements of type A. So to compare LocalDates you need Ordering[LocalDate] instance.
LocalDate extends Comparable in Java and Scala conveniently provides instances for Comparables so when you invoke:
Ordering[java.time.LocalDate]
in REPL you'll see that Scala is able to provide you the instance without you needing to do anything (you could take a look at the list of methods provided by this typeclass).
Since you have and Ordering in implicit scope which types matches the Stream's type (e.g. Stream[LocalDate] needs Ordering[LocalDate]) you can call .max method... and that's it.
val processedResult : Stream[LocalDate] = ...
val newestDate: LocalDate = processedResult.max

can`t bind[SttpBackend[Try, Nothing]]

I want to use sttp library with guice(with scalaguice wrapper) in my app. But seems it is not so easy to correctly bind things like SttpBackend[Try, Nothing]
SttpBackend.scala
Try[_] and Try[AnyRef] show some other errors, but still have no idea how it should be done correctly
the error I got:
kinds of the type arguments (scala.util.Try) do not conform to the expected kinds of the type parameters (type T).
[error] scala.util.Try's type parameters do not match type T's expected parameters:
[error] class Try has one type parameter, but type T has none
[error] bind[SttpBackend[Try, Nothing]].toProvider[SttpBackendProvider]
[error] ` ^
SttpBackendProvider looks like:
def get: SttpBackend[Try, Nothing] = TryHttpURLConnectionBackend(opts)
complete example in scastie
interesting that version scalaguice 4.1.0 show this error, but latest 4.2.2 shows error inside it with converting Nothing to JavaType
I believe you hit two different bugs in the Scala-Guice one of which is not fixed yet (and probably even not submitted yet).
To describe those issues I need a fast intro into how Guice and Scala-Guice work. Essentially what Guice do is have a mapping from type onto the factory method for an object of that type. To support some advanced features types are mapped onto some internal "keys" representation and then for each "key" Guice builds a way to construct a corresponding object. Also it is important that generics in Java are implemented using type erasure. That's why when you write something like:
bind(classOf[SttpBackend[Try, Nothing]]).toProvider(classOf[SttpBackendProvider])
in raw-Guice, the "key" actually becomes something like "com.softwaremill.sttp.SttpBackend". Luckily Guice developers have thought about this issue with generics and introduced TypeLiteral[T] so you can convey the information about generics.
Scala type system is more reach than in Java and it has some better reflection support from the compiler. Scala-Guice exploits it to map Scala-types on those more detailed keys automatically. Unfortunately it doesn't always work perfectly.
The first issue is the result of the facts that the type SttpBackend is defined as
trait SttpBackend[R[_], -S]
so it uses it expects its first parameter to be a type constructor; and that originally Scala-Guice used the scala.reflect.Manifest infrastructure. AFAIU such higher-kind types are not representable as Manifest and this is what the error in your question really says.
Luckily Scala has added a new scala.reflect.runtime.universe.TypeTag infrastructure to tackle this issue in a better and more consistent way and the Scala-Guice migrated to its usage. That's why with the newer version of Scala-Guice the compiler error goes away. Unfortunately there is another bug in the Scala-Guice that makes the code fail in runtime and it is a lack of handling of the Nothing Scala type. You see, the Nothing type is a kind of fake one on the JVM. It is one of the things where the Scala type system is more reach than the Java one. There is no direct mapping for Nothing in the JVM world. Luckily there is no way to create any value of the type Nothing. Unfortunately you still can create a classOf[Nothing]. The Scala-to-JVM compiler handles it by using an artificial scala.runtime.Nothing$. It is not a part of the public API, it is implementation details of specifically Scala over JVM. Anyway this means that the Nothing type needs additional handling when converting into the Guice TypeLiteral and there is none. There is for Any the cousin of Nothing but not for Nothing (see the usage of the anyType in TypeConversions.scala).
So there are really two workarounds:
Use raw Java-based syntax for Guice instead of the nice Scala-Guice one:
bind(new TypeLiteral[SttpBackend[Try, Nothing]]() {})
.toInstance(sttpBackend) // or to whatever
See online demo based on your example.
Patch the TypeConversions.scala in the Scala-Guice as in:
private[scalaguice] object TypeConversions {
private val mirror = runtimeMirror(getClass.getClassLoader)
private val anyType = typeOf[Any]
private val nothingType = typeOf[Nothing] // added
...
def scalaTypeToJavaType(scalaType: ScalaType): JavaType = {
scalaType.dealias match {
case `anyType` => classOf[java.lang.Object]
case `nothingType` => classOf[scala.runtime.Nothing$] //added
...
I tried it locally and it seems to fix your example. I didn't do any extensive tests so it might have broken something else.

Initializing the factory at compile time

I have a factory that should return an implementation depending on the name.
val moduleMap = Map(Modules.moduleName -> new ModuleImpl)
def getModule(moduleName: String): Module =
moduleMap.get(moduleName) match {
case Some(m) => m
case _ =>
throw new ModuleNotFoundException(
s"$moduleName - Module could not be found.")
}
In order for each call to the "getModule" method not to create an instance, there is a map in which all the modules must be initialized in bootstrap class.
I would like to get rid of the need to do this manually(also all classes have a distinctive feature).
List of options that came to my mind:
Reflection(we can use Scala Reflection API or any thrid-party
library)
Automated process.
Need to initialize immediately at startup.
Reflection is a pain.
Metaprogramming(ScalaMeta) + Reflection
Macros only change the code, the execution happens later.
Can we move initialization process to compile time?
I know that compiler can optimize and replace code, next fragment before compilation
val a = 5 + 5
after compilation compiler change that piece to 10, can we use some directives or another tools to evaluate and execute some code at compile time and use only final value?
Do you use any framework or you write your own? I answered similar question about Guice here. You can use it without Guice as well: instead of Module you will have your Factory, which you need to initialize from somewhere, and during initialization, you will fill your map using reflection
In general I think it is the easiest approach. Alternatively, you can write macros, which just replaces part of reflective initialization, but not sure that it will give you some profit (if I understand your question right, this initialization will happen just once at startup).
I do not see how scalameta can help you? Probably, only in case if all your implementations are in source tree available to you, so you can analyze it and generate initialization (similar to macros)? Probably, this would add such plus as easier search for implementation, but will add minus: will work only on implementations in your sources.
Your example of compile-time optimization is not applicable. In your example, you talk about compile-time constant (even with arithmetic it could be a problem, see this comment), but in your question you need specific run-time behavior. So compile time could be only code generation from macros or based on scalameta from my point of view.

Is it possible to achieve functionality provided by implicit classes via macros?

We are pretty familiar with implicits in Scala for now, but macros are pretty undiscovered area (at least for me) and, despite the presence of some great articles by Eugene Burmako, it is still not an easy material to just dive in.
In this particular question I'd like to find out if there is a possibility to achieve the analogous to the following code functionality using just macros:
implicit class Nonsense(val s: String) {
def ##(i:Int) = s.charAt(i)
}
So "asd" ## 0 will return 'a', for example. Can I implement macros that use infix notation? The reason to this is I'm writing a DSL for some already existing project and implicits allow making the API clear and concise, but whenever I write a new implicit class, I feel like introducing a new speed-reducing factor. And yes, I do know about value classes and stuff, I just think it would be really great if my DSL transformed into the underlying library API calls during compilation rather than in runtime.
TL;DR: can I replace implicits with macros while not changing the API? Can I write macros in infix form? Is there something even more suitable for this case? Is the trouble worth it?
UPD. To those advocating the value classes: in my case I have a little more than just a simple wrapper - they are often stacked. For example, I have an implicit class that takes some parameters, returns a lambda wrapping this parameters (i.e. partial function), and the second implicit class that is made specifically for wrapping this type of functions. I can achieve something like this:
a --> x ==> b
where first class wraps a and adds --> method, and the second one wraps the return type of a --> x and defines ==>(b). Plus it may really be the case when user creates considerable amount of objects in this fashion. I just don't know if this will be efficient, so if you could tell me that value classes cover this case - I'd be really glad to know that.
Back in the day (2.10.0-RC1) I had trouble using implicit classes for macros (sorry, I don't recollect why exactly) but the solution was to use:
an implicit def macro to convert to a class
define the infix operator as a def macro in that class
So something like the following might work for you:
implicit def toNonsense(s:String): Nonsense = macro ...
...
class Nonsense(...){
...
def ##(...):... = macro ...
...
}
That was pretty painful to implement. That being said, macro have become easier to implement since.
If you want to check what I did, because I'm not sure that applies to what you want to do, refer to this excerpt of my code (non-idiomatic style).
I won't address the relevance of that here, as it's been commented by others.

How do you do dependency injection with the Cake pattern without hardcoding?

I just read and enjoyed the Cake pattern article. However, to my mind, one of the key reasons to use dependency injection is that you can vary the components being used by either an XML file or command-line arguments.
How is that aspect of DI handled with the Cake pattern? The examples I've seen all involve mixing traits in statically.
Since mixing in traits is done statically in Scala, if you want to vary the traits mixed in to an object, create different objects based on some condition.
Let's take a canonical cake pattern example. Your modules are defined as traits, and your application is constructed as a simple Object with a bunch of functionality mixed in
val application =
new Object
extends Communications
with Parsing
with Persistence
with Logging
with ProductionDataSource
application.startup
Now all of those modules have nice self-type declarations which define their inter-module dependencies, so that line only compiles if your all inter-module dependencies exist, are unique, and well-typed. In particular, the Persistence module has a self-type which says that anything implementing Persistence must also implement DataSource, an abstract module trait. Since ProductionDataSource inherits from DataSource, everything's great, and that application construction line compiles.
But what if you want to use a different DataSource, pointing at some local database for testing purposes? Assume further that you can't just reuse ProductionDataSource with different configuration parameters, loaded from some properties file. What you would do in that case is define a new trait TestDataSource which extends DataSource, and mix it in instead. You could even do so dynamically based on a command line flag.
val application = if (test)
new Object
extends Communications
with Parsing
with Persistence
with Logging
with TestDataSource
else
new Object
extends Communications
with Parsing
with Persistence
with Logging
with ProductionDataSource
application.startup
Now that looks a bit more verbose than we would like, particularly if your application needs to vary its construction on multiple axes. On the plus side, you usually you only have one chunk of conditional construction logic like that in an application (or at worst once per identifiable component lifecycle), so at least the pain is minimized and fenced off from the rest of your logic.
Scala is also a script language. So your configuration XML can be a Scala script. It is type-safe and not-a-different-language.
Simply look at startup:
scala -cp first.jar:second.jar startupScript.scala
is not so different than:
java -cp first.jar:second.jar com.example.MyMainClass context.xml
You can always use DI, but you have one more tool.
The short answer is that Scala doesn't currently have any built-in support for dynamic mixins.
I am working on the autoproxy-plugin to support this, although it's currently on hold until the 2.9 release, when the compiler will have new features making it a much easier task.
In the meantime, the best way to achieve almost exactly the same functionality is by implementing your dynamically added behavior as a wrapper class, then adding an implicit conversion back to the wrapped member.
Until the AutoProxy plugin becomes available, one way to achieve the effect is to use delegation:
trait Module {
def foo: Int
}
trait DelegatedModule extends Module {
var delegate: Module = _
def foo = delegate.foo
}
class Impl extends Module {
def foo = 1
}
// later
val composed: Module with ... with ... = new DelegatedModule with ... with ...
composed.delegate = choose() // choose is linear in the number of `Module` implementations
But beware, the downside of this is that it's more verbose, and you have to be careful about the initialization order if you use vars inside a trait. Another downside is that if there are path dependent types within Module above, you won't be able to use delegation that easily.
But if there is a large number of different implementations that can be varied, it will probably cost you less code than listing cases with all possible combinations.
Lift has something along those lines built in. It's mostly in scala code, but you have some runtime control. http://www.assembla.com/wiki/show/liftweb/Dependency_Injection