Asking if an object is invalid - iphone

I am trying to determine if an object is valid. The program has (at least) two threads and one of the threads might invalidate the object by removing it from an NSMutableArray. I need the other thread to check either its existence or validity before acting on it.

You can't. The only way to check if the memory your object pointer has still represents a valid object is to dereference it, but dereferencing an "invalid" object (by which I assume you mean one that has been dealloced) will result in either accessing the memory of a new object that has been allocated in the same location, garbage data that may or may not be identical to a normal object, or an unmapped memory page that will result in an immediate EXEC_BAD_ACCESS.
Any time you are holding a reference to an object you might use in the future you must retain it. If you don't you have not shown any interest or ownership in the object and the system may throw it away at any time.
Using objective C accessors and properties instead of directly setting ivars and using retain/release simplifies doing the right thing quite a bit.

Multi-threaded programming is hard. Hard does not begin to capture how difficult it is. This is the kind of hard in which a general, useable, 'reasonably qualified' way of deterministically adding two different numbers together that are being mutated and shared by multiple threads in bounded time without the use of any special assistance from the CPU in the form of atomic instructions would be a major breakthrough and the thesis of your PhD. A deity of your choice would publicly thank you for your contribution to humanity. Just for adding two numbers together. Actually, multi-threaded programming is even harder than that.
Take a look at: Technical Note TN2059
Using collection classes safely with multithreaded applications. It covers this topic in general, and outlines some of the non-obvious pitfalls that await you.

You say
I need the other thread to check either its existence or validity before acting on it.
The easiest way is to hold on to the index of the object in the NSMutableArray and then do the following
if( myObject == [myArray objectAtIndex: myObjectIndex] ) {
// everything is good !
}
else {
// my object is not what I think it is anymore
}
There are clear problem with this approach however
insertion, and deletion will stuff you up
The approach is not thread safe since the array can be changed while you are reading it
I really recomend using a different way to share this array between the two threads. Does it have to be mutable? If it doesn't then make it immutable and then you no longer have to worry about the threading issues.
If it does, then you really have to reconsider your approach. Hopefully someone can give an cocoa way of doing this in a thread safe way as I don't have the experience.

Related

Swift - Risk in using autoreleasepool? CPU usage?

With the Xcode Profiler I have just spotted a not really necessary memory peak on JSON decoding. Apparently it's a known issue and I should wrap the call in an autoreleasepool which helped:
//extension..
var jsonData: Data? {
return autoreleasepool{ try? JSONSerialization.data(withJSONObject: self, options: []) }
}
I found another few big chunks of allocations that were not really needed so I applied my newly-learned trick to other code as well, such as the following:
var protoArray = [Proto_Bit]()
for bit in data {
autoreleasepool{
if let str = bit.toJSONString() {
if let proto = try? Proto_Bit(jsonString: str) {
protoArray.append(proto)
}
}
}
}
Now, before I wrap every single instruction of my code (or at least wherever I see fit) in this autoreleasepool thing, I would like to ask if there are any risks or drawbacks associated to it.
With these two wraps I was able to reduce my peak memory consumption from 500mb to 170mb. I am aware that Swift also does these kinds of things behind the scenes and probably has some guards in place however I would rather be safe than sorry.
does autoreleasepool come with a CPU overhead? If it is 5% I would be okay with that since it sounds like a good tradeoff, if it's more I would have to investigate
can I mess up anything using autoreleasepool? Null pointers, thread locking etc. since the block structure looks a bit scary.. or is this just telling the hardware "at the end of the bracket clean up and close the door behind you" without affecting other objects?
Autorelease Pools are a mechanism which comes from Objective-C for helping automate memory management and ensure that objects and resources are released "eventually", where that "eventually" comes when the pool is drained. i.e., an autorelease pool, once created on a thread, captures (retains) all objects which are -autoreleaseed while the pool is active — when the pool is drained, all of those objects are released. (Note that this is a Foundation feature in conjunction with the Objective-C runtime, and is not directly integrated with hardware: it's way, way higher-level than that.)
As a short-hand for managing autorelease pools directly (and avoiding creating NSAutoreleasePool instances directly), Objective-C introduced the #autoreleasepool language keyword, which effectively creates an autorelease pool at the beginning of the scope, and drains it at the end:
#autoreleasepool /* create an autorelease pool to capture autoreleased objects */ {
// ... do stuff ...
} /* release the autoreleasepool, and all objects that were in it */
Introducing autorelease pools manually in this way grants you more control over when autoreleased objects are effectively cleaned up: if you know that a block of code creates many autoreleased objects that really don't need to outlive that block of code, that may be a good candidate for wrapping up in an #autoreleasepool.
Autorelease pools pre-date ARC, which automates reference counting in a deterministic way, and its introduction made autorelease pools became largely unnecessary in most code: if an object can be deterministically retained and released, there's no need to rely on autoreleasing it "at some point". (And in fact, along with regular memory management calls like -retain and -release themselves, ARC will not allow you to call -autorelease on objects directly either.)
Swift, following the ARC memory management model, also does not rely on autoreleasing objects — all objects are deterministically released after their last usage. However: Swift does still need to interoperate with Objective-C code, and notable, not all Objective-C code (including a lot of code in, e.g., Foundation) uses ARC. Many internal Apple frameworks still use Objective-C's manual memory management, and thus still rely on autoreleased objects.
On platforms where Swift might need to interoperate with Objective-C code, no work needs to be explicitly done in order to allow autoreleased objects to eventually be released: every Swift application on Darwin platforms has at least one implicit autorelease pool at the root of the process which captures autoreleased objects. However, as you note: this "eventual" release of Objective-C objects might keep memory usage high until the pool is drained. To help alleviate that high memory usage, Swift has autoreleasepool { ... } (matching Objective-C's #autoreleasepool { ... }), which allows you to explicitly and eagerly capture those autoreleased objects, and free them at the end of the scope.
To answer your questions directly, but in reverse order:
Can I mess up anything using autoreleasepool? For correctly-written code, no. All you're doing is helping the Objective-C runtime clean up these objects a little bit earlier than it would otherwise. And it's critical to note: the objects will only be released by the pool — if their retain count is still positive after the pool releases them, they must still be in use somewhere, and will not be deallocated until that other owner holding on to the object also releases them.
Is it possible that the introduction of an autoreleasepool will cause some unexpected behavior to occur which didn't before? Absolutely. Incorrectly-written code could have accidentally worked due to the fact that an object was incidentally kept alive long enough to prevent unintentional behavior from occurring — and releasing the object sooner might trigger it. But, this is both unlikely (given the miniscule amount of actually manual memory management outside of Apple frameworks) and not something you can rely on: if the code misbehaves inside of a newly-introduced autoreleasepool, it wasn't correct to begin with, and could have backfired on you some other way.
Does autoreleasepool come with a CPU overhead? Yes, and it is likely vanishingly small compared to the actual work an application performs. But, that doesn't mean that sprinkling autoreleasepool all over the place will be useful:
Given the decreasing amount of autoreleased objects in a Swift project as increasing amounts of code transition away from Objective-C, it's becoming rarer to see large numbers of autoreleased objects which need to be eagerly cleaned up. You could sprinkle autoreleasepools everywhere, but it's entirely possible that those pools will be entirely empty, with nothing to clean up
autoreleasepools don't affect native Swift allocations: only Objective-C objects can be autoreleased, which means that for a good portion of Swift code, autoreleasepools are entirely wasted
So, when should you use autoreleasepools?
When you're working with code coming from Objective-C, which
You've measured to show that is contributing to high memory usage thanks to autoreleased objects, which
You've also measured are cleaned up appropriately by the introduction of an autoreleasepool
In other words, exactly what you've done here in your question. So, kudos.
However, try to avoid cargo-culting the insertion of autoreleasepools all over the place: it's highly unlikely to be effective without actual measurements and understanding what might be going on.
[An aside: how do you know when objects/code might be coming from Objective-C? You can't, very easily. A good rule of thumb is that many Apple frameworks are still written in Objective-C under the hood, or may at some layer return an Objective-C object bridged (or not) to Swift — so they may be a likely culprit to investigate if you've measured something actionable. 3rd-party libraries are also much less likely to contain Objective-C these days, but you may also have source access to them to confirm.]
Another note about optimizations and autoreleasepools: in general, you should not typically expect a Release configuration of a build to behave differently with regard to autoreleased objects as opposed to a Debug configuration.
Unlike ARC code (both in Swift and in Objective-C), where the compiler can insert memory management optimizations for code at compile time, autorelease pools are a runtime feature, and since any retain will necessarily keep an object instance alive, even a single insertion of an object into an autorelease pool will keep it alive until it is disposed of at runtime. So, even if the compiler can aggressively optimize the specific locations of retains and releases for most objects in a Release configurations, there's nothing to be done for an object that's autoreleased.
(Well, the ARC optimizer can do some amount of optimization around autoreleasing objects if it has enough visibility into all of the code using the object, the context of the autorelease pools it belongs to, etc., but this is usually very limited because the scope in which the object was originally -autoreleased is usually far from the scope in which the autorelease pool lives, by definition [otherwise it would be a candidate for regular memory management].)

What are the potential repercussions of a lazy property getting initialised more than once?

The Apple doc says that
If a property marked with the lazy modifier is accessed by multiple
threads simultaneously and the property has not yet been initialized,
there is no guarantee that the property will be initialized only once.
My question is what are the potential repercussions of a property getting initialized more than once?
And in case of a property getting initialized more than once, which one of it will be used? How Swift manages them?
I went through some of the answers.
Is it normal that lazy var property is initialized twice?
But they are just saying that lazy properties can get initialized more than once. I want to know what are the repercussions of this.
Thanks in advance.
(See my comment to rmaddy's answer regarding my concern about thread-safety on writing the pointer itself. My gut is that memory corruption is not possible, but that object duplication is. But I can't prove so far from the documentation that memory corruption isn't possible.)
Object duplication is a major concern IMO if the lazy var has reference semantics. Two racing threads can get different instances:
Thread 1 begins to initialize (object A)
Thread 2 begins to initialize (object B)
Thread 1 assigns A to var and returns A to caller
Thread 2 assigns B to var and returns B to caller
This means that thread 1 and thread 2 have different instances. That definitely could be a problem if they are expecting to have the same instance. If the type has value semantics, then this shouldn't matter (that being the point of value semantics). But if it has reference semantics, then this very likely be a problem.
IMO, lazy should always be avoided if multi-threaded callers are possible. It throws uncertainty into what thread the object construction will occur on, and the last thing you want in a thread-safe object is uncertainty about what thread code will run on.
Personally I've rarely seen good use cases for lazy except for where you need to pass self in the initializer of one of your own properties. (Even then, I typically use ! types rather than lazy.) In this way, lazy is really just a kludgy work-around a Swift init headache that I wish we could solve another way, and do away with lazy, which IMO has the same "doesn't quite deliver what it promises, and so you probably have to write your own version anyway" problem as #atomic in ObjC.
The concept of "lazy initialization" is only useful if the type in question is both very expensive to construct, and unlikely to ever be used. If the variable is actually used at some point, it's slower and has less deterministic performance to make it lazy, plus it forces you to make it var when it is most often readonly.
The answer completely depends on the code you have inside the implementation of the lazy property. The biggest problem would arise from any side effects you've put in the code since they might be called more than once.
If all you do is create a self-contained object, initialize it, and return it, then there won't be any issues.
But if also do things like add a view, update an array or other data structure, or modify other properties, then you have an issue if the lazy variable is created more than once since all of those side effects will happen more than once. You end up adding two views or adding two objects to the array, etc.
Ensure that the code in your lazy property only creates and initializes an object and does not perform any other operations. If you do that, then your code won't cause any issues if the lazy property gets created multiple times from multiple threads.

Retain count of the start from 4 [duplicate]

I would like to know in what situation did you use -retainCount so far, and eventually the problems that can happen using it.
Thanks.
You should never use -retainCount, because it never tells you anything useful. The implementation of the Foundation and AppKit/UIKit frameworks is opaque; you don't know what's being retained, why it's being retained, who's retaining it, when it was retained, and so on.
For example:
You'd think that [NSNumber numberWithInt:1] would have a retainCount of 1. It doesn't. It's 2.
You'd think that #"Foo" would have a retainCount of 1. It doesn't. It's 1152921504606846975.
You'd think that [NSString stringWithString:#"Foo"] would have a retainCount of 1. It doesn't. Again, it's 1152921504606846975.
Basically, since anything can retain an object (and therefore alter its retainCount), and since you don't have the source to most of the code that runs an application, an object's retainCount is meaningless.
If you're trying to track down why an object isn't getting deallocated, use the Leaks tool in Instruments. If you're trying to track down why an object was deallocated too soon, use the Zombies tool in Instruments.
But don't use -retainCount. It's a truly worthless method.
edit
Please everyone go to http://bugreport.apple.com and request that -retainCount be deprecated. The more people that ask for it, the better.
edit #2
As an update,[NSNumber numberWithInt:1] now has a retainCount of 9223372036854775807. If your code was expecting it to be 2, your code has now broken.
NEVER!
Seriously. Just don't do it.
Just follow the Memory Management Guidelines and only release what you alloc, new or copy (or anything you called retain upon originally).
#bbum said it best here on SO, and in even more detail on his blog.
Autoreleased objects are one case where checking -retainCount is uninformative and potentially misleading. The retain count tells you nothing about how many times -autorelease has been called on an object and therefore how many time it will be released when the current autorelease pool drains.
I do find retainCounts very useful when checked using 'Instruments'.
Using the 'allocations' tool, make sure 'Record reference counts' is turned on and you can go into any object and see its retainCount history.
By pairing allocs and releases you can get a good picture of what is going on and often solve those difficult cases where something is not being released.
This has never let me down - including finding bugs in early beta releases of iOS.
Take a look at the Apple documentation on NSObject, it pretty much covers your question:
NSObject retainCount
In short, retainCount is probably useless to you unless you've implemented your own reference counting system (and I can almost guarantee you won't have).
In Apple's own words, retainCount is "typically of no value in debugging memory management issues".
Of course you should never use the retainCount method in your code, since the meaning of its value depends on how many autoreleases have been applied to the object and that is something you cannot predict. However it is very useful for debugging -- especially when you are hunting down memory leaks in code that calls methods of Appkit objects outside of the main event loop -- and it should not be deprecated.
In your effort to make your point you seriously overstated the inscrutable nature of the value. It is true that it is not always a reference count. There are some special values that are used for flags, for example to indicate that an object should never be deallocated. A number like 1152921504606846975 looks very mysterious until you write it in hex and get 0xfffffffffffffff. And 9223372036854775807 is 0x7fffffffffffffff in hex. And it really is not so surprising that someone would choose to use values like these as flags, given that it would take almost 3000 years to get a retainCount as high as the larger number, assuming you incremented the retainCount 100,000,000 times per second.
What problems can you get from using it? All it does is return the retain count of the object. I have never called it and can't think of any reason that I would. I have overridden it in singletons to make sure they aren't deallocated though.
You should not be worrying about memory leaking until your app is up and running and doing something useful.
Once it is, fire up Instruments and use the app and see if memory leaks really happen. In most cases you created an object yourself (thus you own it) and forgot to release it after you were done.
Don't try and optimize your code as you are writing it, your guesses as to what may leak memory or take too long are often wrong when you actually use the app normally.
Do try and write correct code e.g. if you create an object using alloc and such, then make sure you release it properly.
Never use the -retainCount in your code. However if you use, you will never see it returns zero. Think about why. :-)
You should never use it in your code, but it could definitely help when debugging
The examples used in Dave's post are NSNumber and NSStrings...so, if you use some other classes, such as UIViews, I'm sure you will get the correct answer(The retain count depends on the implementation, and it's predictable).

How many Objective-C messages per second are possible on the iPhone 4?

When implementing algorithms and other things while trying to maintain reusability and separation patterns, I regularly get stuck in situations like this:
I communicate back and forth with an delegate while traversing a big graph of objects. My concern is how much all this messaging hurts, or how much I must care about Objective-C messaging overhead.
The alternative is to not separate anything and always put the individual code right into the algorithm like for example this graph traverser. But this would be nasty to maintain later and is not reusable.
So: Just to get an idea of how bad it really is: How many Objective-C messages can be sent in one second, on an iPhone 4?
Sure I could write a test but I don't want to get it biased by making every message increment a variable.
There's not really a constant number to be had. What if the phone is checking email in the background, or you have a background thread doing IO work?
The approach to take with things like this is, just do the simple thing first. Call delegates as you would, and see if performance is OK.
If it's not, then figure out how to improve things. If messaging is the overhead you could replace it with a plan C function call.
Taking the question implicitly to be "at what point do you sacrifice good design patterns for speed?", I'll add that you can eliminate many of the Objective-C costs while keeping most of the benefits of good design.
Objective-C's dynamic dispatch consults a table of some sort to map Objective-C selectors to the C-level implementations of those methods. It then performs the C function call, or drops back onto one of the backup mechanisms (eg, forwarding targets) and/or ends up throwing an exception if no such call exists. In situations where you've effectively got:
int c = 1000000;
while(c--)
{
[delegate something]; // one dynamic dispatch per loop iteration
}
(which is ridiculously artificial, but you get the point), you can instead perform:
int c = 1000000;
IMP methodToCall = [delegate methodForSelector:#selector(something)];
while(c--)
{
methodToCall(delegate, #selector(something));
// one C function call per loop iteration, and
// delegate probably doesn't know the difference
}
What you've done there is taken the dynamic part of the dispatch — the C function lookup — outside the inner loop. So you've lost many dynamic benefits. 'delegate' can't method swizzle during the loop, with the side effect that you've potentially broken key-value observing, and all of the backup mechanisms won't work. But what you've managed to do is pull the dynamic stuff out of the loop.
Since it's ugly and defeats many of the Objective-C mechanisms, I'd consider this bad practice in the general case. The main place I'd recommend it is when you have a tightly constrained class or set of classes hidden somewhere behind the facade pattern (so, you know in advance exactly who will communicate with whom and under what circumstances) and you're able to prove definitively that dynamic dispatch is costing you significantly.
For full details of the inner workings at the C level, see the Objective-C Runtime Reference. You can then cross-check that against the NSObject class reference to see where convenience methods are provided for getting some bits of information (such as the IMP I use in the example).

Does the memory address of an object stay intact over its lifetime?

I am not sure if the memory address of an object keeps beeing the same over its lifetime. Does it? Or does it change sometimes during the object's existence?
Yes, the address of any given object is constant in Objective-C. This is rather important since objects are always referred to by address. :-) (Garbage collectors which move things about and update all pointers to them exist, but garbage collection isn’t supported on the iPhone and the Mac Obj-C garbage collector is documented not to do that – see Garbage Collection Programming Guide: Architecture, under How the Garbage Collector Works.)
If you mean self, then, yes, it stays intact over the lifetime of the object.
Although I have not gone indepth in the matter my views are as under:
Memory addresses of an object may not be static.
For example in Java, objects don't have pointers but references, the JVM might move around objects as part of its memory management scheme and might change the reference value in accordance to the moved object.
Also objects might be moved around as part of the Garbage collection procedure of the JVM.
Although I have not read of any official documentation on this, in case you come across the same you could post it here.
The same process might be taking place in .Net.
In the Cocoa Garbage Collection Programming Guide I'm not seeing quite the ironclad assurance that Ahruman makes above that an object address is guaranteed permanent:
http://developer.apple.com/mac/library/documentation/Cocoa/Conceptual/GarbageCollection/Articles/gcArchitecture.html
Closed vs. Open Systems section:
'[In an open garbage collection system, collectors] reallocate and copy blocks of memory and update each and every referring pointer to reflect the new address. [...] Cocoa's garbage collector strikes a balance between being “closed” and “open” by knowing exactly where pointers to scanned blocks are wherever it can, by easily tracking "external" references, and being "conservative" only where it must.'
And with the general "dynamic" nature of the Cocoa runtime, I'd want a really explicit discussion of the subject in Apple documentation even for non-garbage-collected program. I don't find any statements along the lines of "the memory address of an object is guaranteed not to change" in searching the whole of developer.apple.com -- try Google with:
site:developer.apple.com cocoa "object's memory address" OR "memory address of an object" guaranteed OR permanent
And then there's that scary subject of... multi-threading (ahhhh).