How do you manage versions in Workflow Foundation? - persistence

How do you manage versions of work flows in WF when you have long running work flows and you might have two or three versions in the persistence store at the same time and have to be able to access them all?

I did a series of 4 blog post covering most of the stuff you need to be aware of when versioning long running workflows.
One thing I tend to avoid is using the HandleExternalEventActivity as this greatly complicates things. For that matter I tend to stick to simple types and xml serialized objects.
http://msmvps.com/blogs/theproblemsolver/archive/2008/09/10/versioning-long-running-workfows.aspx
http://msmvps.com/blogs/theproblemsolver/archive/2008/09/11/versioning-long-running-workflows-part-2.aspx
http://msmvps.com/blogs/theproblemsolver/archive/2008/09/16/versioning-long-running-workfows-part-3.aspx
http://msmvps.com/blogs/theproblemsolver/archive/2008/09/22/versioning-long-running-workflows-part-4.aspx

Related

Architecture of microservices from a business approach or technical?

Our team is trying to decouple a monolithic spring mvc administrative application (create, update, delete) and we want to adopt an architecture based on microservices.
After a bit of research, it seems the best is create microservices according to the problem that a specific part of the software solves, for example, Managing Clients.
The problem comes when we read some definitions, like the following from Wikipedia:
In software engineering, a monolithic application describes a
single-tiered software application in which the user interface and
data access code are combined into a single program from a single
platform.
Based on that definition, my application is not monolithic, because it is perfectly separated in layers, but it is not found in a micro-services architecture either, which is confusing to me since in the web everything is about Monolithic vs. Microservices.
So, should the microservices architecture be designed based on the business problem it solves?
Should the microservices architecture be designed based on to the way in which the application is organized in layers?
Thanks.
I like to view each microservice as self contained smaller monoliths. When you're forcing yourself to split up your legacy application to, um, smaller monoliths, you'll find:
60% of your code is scaffolding and will need to be repeated across multiple services.
It's easier to split things (and maintain them that way) if you've established a what-goes-where rule upfront.
The most common approach is to split the application by functionality area. So to answer your question, I'd agree more with the image at the top-right, assuming you intended to show multiple containers there.
And about #1 above, there's often a whole bunch of scaffolding modules that you can avoid writing by hand after all.
From my experience, the most obvious advantage of a microservice is the ability to scale horizontally. User analysis takes to long? Just add 10 more workers. Done. Remove then. No need to add more RAM/CPU/whatever to your already costly server that runs your monolith.
Do not plan ahead an try to separate ClientManager microservice - this should be just a class.
You are thinking about migrating to microservices for a reason. Something is using up too much resources. Find the most problematic process that slows everything down, and create microservice for it. It can be for example report generation, user creation, data agregation. Start with planning the API. It will state clearly, what are responsibilities it will have and how much resources it will use. When you know what it should do, name it properly.
Agile software methodologies are your greatest friend in this process. Take the processes one by one. Experiment, iterate and evaluate. With time, it will be obvious how the microservices should do.
There is also a hot topic on how to organize code with microservices - I lean towards a monorepo - a single repository with all the code.
Pros: One pull request for many services, easy utils sharing, common dependencies, common deployment procedure and easier automation.
Cons: You can easily break the API contract and do too much work within one microservice (meaning, it can take other services responsiblity.)

Implementing SOA with RESTful service and application APIs?

At the moment we have one huge API which is used by our backoffice, our frontend, and also our public API.
This causes me a lot of headaches because when building new endpoints I find a lot of application specific logic in the code which I don't necessarily want to include in my endpoint. For example, the code to create a user might contain code to send a welcome email, but because that's not needed for the backoffice endpoint I will then need to add a new endpoint without that logic.
I was thinking about a large refactor to break our code base in to a number of smaller highly specific service APIs, then building a set of small application APIs on top of those.
So for example, an application endpoint to create a new user might do something like this after the refactor:
customerService.createCustomer();
paymentService.chargeCard();
emailService.sendWelcomeEmail();
The application and service APIs will be entirely separate code bases (perhaps a separate code base per service), they may also be built using different languages. They will only interact through REST API calls. They will be on the same local network, so latency shouldn't be a huge issue.
Is this a bad idea? I've never seen/worked on a codebase which has separated the two before, so perhaps there is a better architecture to achieve the flexibility and maintainability I'm looking for?
Advise, links, or comments would all be appreciated.
Your idea of making multiple, well-defined services is sound and really it is the best way to approach this. Going with purely micro-services approach however trendy it might seem, proves to be an overkill most often than not. This is why I'd just redesign the existing API/services properly and follow solid and sound SOA design principles below. Good Resources could be found on both serviceorientation.com and soapatterns.org I've always used them as reference in my career.
Consider what types of services you need
(image from serviceorientation.com)
Entity services are generally your Client, Payment services - e.g. services centered around an entity in your domain. They should be business-agnostic, and be able to be reused in all scenarios. They could be called sometimes by clients directly if sufficient for their needs. They could be called by Task services.
Utility services contain logic you're likely to reuse in other services, but are generally not called by the clients directly. Rather, they'd be called by Task and Entity services. An example might be a Transliteration service.
Task services combine and reuse Entity and Utility services into meaningful tasks. Most often they are not that agnostic and they do implement some specific business logic. They have meaningful business operations and they are what clients mostly call.
Principles to follow when redesigning
I strongly recommend going over this cheat sheet and making sure everything there is covered when you do your redesign. It's great help.
In general, you should make sure that:
Each service has a common context and follows the separation of concerns principle. E.g. Clients service is only for clients related operations, etc.
Each of the Entity and Utility services is business-agnostic and basic enough. So it can be reused in multiple scenarios and context without being changed. Contract must be simple - CRUD and only common operations that make sense in most usage scenarios.
Services follow a common data model - make sure all the data structures you use are used uniformly in all services in order to prevent need for integration efforts in the future and promote combination of services for clients to exploit. If you need to receive a customer that another service returns, this should be happening without the need for transformation
OK, but where to put the non-agnostic logic?
Now, you have multiple options for abstracting business logic whenever you have a need for complex business functionality. It depends on your scenario what you're going to chose:
Leave logic to all clients. Let them combine your simplified services
If there is business logic that is commonly implemented in multiple of your applications and has the potential to be reused heavily you can implement a composite service that reuses multiple existing underlying services and exposing the logic.
Service Composability. Concerns on multiple API calls communication overhead.
Well, this is an age-old question - should you make multiple API calls when they will probably create some communication overhead? The answer is - it depends on how complex your scenario is, how much reuse you expect and how flexible you want to be. Also is speed critical? To what extent? In Service Oriented Architecture though, this is a very common approach - to reuse your existing services and combine them in new configurations as needed. Yes, it does add some overhead, but I've seen implementations in very complex environments, for example Telecoms, where thanks to the use of ESB solutions, message queues, etc the overhead is negligible compared to the benefits. Here is a common architecture approach (image from serviceorientation.com):
The mandatory legacy refactoring heads-up
More often than not, changing the established contract for multiple existing client systems is a messy business and could very well lead to lots of refactoring and need for looking for needle-in-a-stack functionality that's somewhere deep in the (possibly) legacy code. Business logic might be dispersed everywhere. So make sure you're ready and have the controls, time and will to lead this battle.
Hope this helps
Is this a bad idea?
No, but this is a big overall question to be able to provide very specific advice.
I'd like to separate this into 3 areas:
Approach
Design
Technology
Working backwards, the Technology is the final and most-specific part, and totally depends on what your current environment is (platforms, skills), and (hopefully) will be reasonable self-evident to you once the other things are in progress.
The Design that you outlined above seems like a good end-state - having multiple, specific, focused APIs, each with their own responsibility. Again, the details of the design will depend on the skills of you and your organization, and the existing platforms that you have. E.g. if you are already using TIBCO (for example) and have a lot invested (licenses, platforms, tools, people) then leveraging some of their published patterns/designs/templates makes sense; but (probably) not if you don't already have TIBCO exposure.
In the abstract, the REST API services seems like a good starting point - there are a lot of tools and platforms at all levels of the system for security, deployment, monitoring, scalability, etc. If you are NGINX users, they have a lot of (platform-independent) thoughts on how to do this also NGINX blog, including some smart thinking on scalability and performance. If you are more adventurous, and have an smart, eager team, a look at Event-driven architecture - see this
Approach (or Process) is the key thing here. Ultimately, this is a refactoring, though your description of "a large refactor" does scare me a little - put that way, it sounds like you are talking about a big-bang change and calling it refactoring. Perhaps it is just language, but what's in my mind would be "an evolution of the 'one huge API' into multiple, specific, focused APIs (by refactoring the architecture)". One place to start is Martin Fowler, while this book is about refactoring software, the principles and approach are the same, just at a higher-level. Indeed, he talks about just this here
IBM talk about refactoring to microservices and make it sound easy to do in one step, but it never is (outside the lab).
You have an existing API, serving multiple internal and external clients. I will suggest that you'll want to keep this interface solid for these clients - separate your refactoring of the implementation from the additional concerns of liaising with and coordinating external systems/groups. My high-level starting approach would be:
identify a small (3-7) number of related methods on the API
ideally if a significant, limited-scope change is needed anyway with these methods, that is good - business value with the code change
design/specify a new stand-alone API specifically for these methods
at first, clone the existing model/naming/style
code a new service just for these
with proper automated CI/CD testing and deployment practices
with associated monitoring
modify the existing API to have calls to these methods re-direct to call the new service
perhaps have a run-time switch to change between the old implementation and the new implementation
remove the old implementation from codebase
capture issues, assumptions and problems along the way
the first pass will involve a lot of learning about what works and doesn't.
then repeat the process over & over, incorporating improvements each time.
At some point in the future, when appropriate due to other business-driven needs, the API published to the back-end, front-end and/or public clients can change, but that is a whole different project.
As you can see, if the API is huge (1,000 methods => 140 releases) this is a many-months process, and having a reasonably frequent release schedule is important. And there may be no value improving code that works reliably and never changes, so a (potentially) large portion of the existing API may remain, just wrapped by a new API.
Other considerations:
public API? Maybe a new version (significant changes) will be needed sooner than the internal APIs
focus on the methods/services used by it
what parts/services change the most (have the most enhancement requests approved)
these are the bits most likely to change, and could benefit most from a better process/architecture
what are future plans for change and where would the API be impacted
e.g. change to user management, change to payment processors, change to fulfilment systems
e.g. new business plans (new products/services)
consider affected methods in the API
Also see:
Using Microservices for Legacy System Modernization
Migrating From a Monolith to APIs and Microservices
Break the Monolith! Loosely Coupled Architecture Brings DevOps Success
From the CEO’s Desk: Application Modernization – Assess, Strategize, Modernize! 9
[Microservices Architecture As A Large-Scale Refactoring Tool 10
Probably the biggest 4 pieces of advice that I can give is:
think refactoring: small changes that don't affect function
think agile: small increments that are valuable, testable, achievable
think continuous: have a vision for where you will (eventually) get to, then work the process continuously
script & automate the processes from code, documentation, testing, deployment, monitoring...
improving it every time!
you have an application/API that works - keep it working!
That is always the first priority (you just need to work to carve-out time/budget for maintenance)
Not a bad idea at all.
Also what are your looking is microservices arch. and with that the question comes is how you break your system into well defined services.
We use Domain Driven Design Arch. to break our system into microservices and lagom framework , which allows every service to be in diff. code base and event driven arch. between microservices.
Now lets look at your problem at low level: you said a service contains code like creating a user and sending a email and one with just creating a user and there might be other code as well.
First we need to understand how many type of code you are writing:
Domain Object Logic (eg: User Object) -- what parameters are valid and all -- this should be independent of service endpoint and should be encapsulated in one Class like user class and we say it an Aggregate in Domain Driven Design terms
Business Reactions -- like on user creation send a email -- using event driven arch. these type of logics are separated into process managers or sagas which could most cases work conditionally like a for user created externally send a mail and for user created internally send a email , by having extra data in the event
Also the current way you are doing it , how are you handling transaction across services???

Using Feature Toggling and IoC in lieu of Branching Code -- Good or Bad Idea?

Our clients get to choose when to upgrade. So, my team literally has to maintain and support dozens of versions of our software product. As you can imagine that results in a lot of branching and merging as hot fixes and service packs have to be propagated across all these flavors. I'm not happy with the situation. The obvious solution is simply not to maintain so many different versions of our product, but that obvious solution is not available to me. So, I'm exploring creative options to lower the team's maintenance work. I'm considering using a mix of Feature Toggling and IoC as a way to implement n-number of versions of our software product. The idea is that I could use a single code base for my product and manage behaviors and features via configuration management. This would be in lieu of having to propagate code across multiple branches. Is this a reasonable approach or am I just trading off one problem for another?
That sounds reasonable, in that this would be the way I'd address such a problem in a greenfield environment.
Let's not call it a Feature Toggle, though. As the name implies, a Feature Toggle is an on/off switch, which may not be what you need.
Sometimes, an upgrade also involves changed behaviour in existing features. That implies that you're probably going to need something more sophisticated than an on/off switch.
The Strategy pattern is a more flexible way of modelling variation in behaviour. Each Strategy can represent a particular version of a particular behaviour, and if you don't want the behaviour at all, you can provide a Null Object implementation. In other words, Feature Toggle can be implemented with a Strategy.
You can inject the Strategies into your application kernel using Dependency Injection, and you could make the choice of Strategies configurable via a configuration system. Most DI Containers I've heard about (on .NET and Java) support file-based configuration.
This essentially describes an add-in architecture.
Now, even for a greenfield application, this is no easy feat to pull off. If you have a headless system, it's not that hard, but once you have UI involved, you start to realise that you're going to need to componentise the UI architecture as well, so that you can plug in UI elements via Strategies.
On a decade-old code base, this would be what I'd call an 'interesting challenge', to say the least.

Common Libraries at a Company

I've noticed in pretty much every company I've worked that they have a common library that is generally shared across a number of projects. More often than not this has been a single companyx-commons project that ends up as a dumping ground for common programs including:
Command Line Parsers
File Utilities
Framework Helpers
etc...
Some of these are well thought out and some duplicate functionality found in Apache commons-lang, commons-io etc..
What are the things you have in your common library and more importantly how do you structure the common libraries to make them easy to improve and incorporate across other projects?
In my experience, the single biggest factor in the success of a common library is user buy-in; users in this case being other developers; and culture of your workplace/team(s) will be a big factor.
Separate libraries (projects/assemblies if you're in .Net) for different application tiers is essential (e.g: there's obviously no point putting UI and data access code together).
Keep things as simple as possible; what you don't put in a common library is often at least as important as what you do. Users of the library won't want to have to think, so usage needs to be super easy.
The golden rule we stuck to was keeping individual functions focused on a single task - do one thing and do it well (or very very well); don't try and provide something that tries to take every possibility into account, the more reusable you think you're making it - the less likely it is to be used. Code Complete (the book) has some excellent content on common libraries.
A good approach to setting/improving a library up is to do regular code reviews and retrospectives; find good candidates that you've already come up with and consider re-factoring them into a library for future projects; a good candidate will be something that more than one developer has had to do on more that one project (for example).
Set-up some sort of simple and clear governance of the libraries - someone who can 'own' a specific library and ensure it's overal quality (such as a senior dev or team lead).
I have so far written most of the common libraries we use at our office.
We have certain button classes that are just slightly more useful to us than the standard buttons
A database management class that does some internal caching and can connect to ODBC, OLEDB, SQL, and Access databases without even the flip of a parameter
Some grid and list controls that are multi threaded so we can add large amounts of data to them without the program slowing and without having to write all the multithreading code every time there is a performance issue with a list box/combo box.
These classes make it easier for all of us to work on each other's code and know how exactly they work since we all use the exact same interfaces throughout our products.
As far as organization goes, all of the DLL's are stored along with their source code on a shared development drive in the office that we all have access to. (We're a pretty small shop)
We split our libraries by function.
Commmon.Ui.dll has base classes for ui elements.
Common.Data.Dll is sort of a wrapper around Enterprise library Data access classes.
Common.Business is a dumping ground for other common classes that don't fit into one of those.
We create other specialized dlls as needs arise.

What level of complexity requires a framework?

At what level of complexity is it mandatory to switch to an existing framework for web development?
What measurement of complexity is practical for web development? Code length? Feature list? Database Size?
If you work on several different sites then by using a common framework across all of them you can spend time working on the code rather than trying to remember what is located where and why.
I'd always use a framework of some sort, even if it's your own, as the uniformity will help you structure your project. Unless it's a one page static HTML project.
There is no mandatory limit however.
I don't think there is a level of complexity that necessitates a framework. For me whenever I am writing a dynamic site I immediately consider a framework, and if it will save me time, I use it(it almost always does, and I almost always do).
Consider that the question may be faulty. Many of the most complex websites don't use any popular, preexisting, framework. Google has their own web server and their own custom way of doing things, as does Amazon, and probably lots of other sites.
If a framework makes your task easier, or provides added value, go for it. However, when you get that framework you are tied to a new dependancy. I'm starting to essentially recreate a Joel on Software post, so I will redirect you here for more on adding unneeded dependencies to your code:
http://www.joelonsoftware.com/articles/fog0000000007.html
All factors matter. You should measure how much time you can save using 3rd party framework and compare it to the risks of using other's code
Never "mandatory." Some problems are not well solved by any framework. It would be suggestible to switch to a framework when most of the code you are implementing has already be implemented by the framework in question in a way that suits your particular application. This saves you time, energy, and will most likely be more stable than the fresh code you would have written.
This is really two questions, you realize. :-) The answer to the first one is that it's never mandatory, but honestly, parsing HTML request parameters directly is pretty horrible right from the start. I don't want to do it even once, so I tend to go toward a framework relatively early on.
As far as what measurement is practical, well, what are you worried about? All of the descriptions that you list have value. Database size matters primarily for scaling, in my opinion (you can write a very simple app if you have a very simple schema, even if there are hundreds of thousands of rows in the database). The feature list will probably determine the number and complexity of UI pages, which will in turn help to dictate the code length.
There are frameworks that are there for getting moving very quickly with a simple blog, django or RoR all the way to enterprise full-stack applications Zope. Not to be tied to just the buzz world, you also have ASP.Net and J2EE, etc.
All frameworks and libraries are tools at your disposal. Determine which ones will make your life easier for your given project and use them.
I would say the reverse is true. At some point, your project gets so expansive, that you actually get slowed down by the shortcomings of the framework. For sufficiently large projects you may, in fact, be better off developing your own framework, to meet your own needs. I have seen many times where people were held back in the decisions they could make, or the work they could produce, because they were trying to do something that the framework didn't anticipate. And doing these things that the framework doesn't anticipate can be very troublesome. The nice thing about making your own framework, is that it can evolve with your project, to be a help to you system, instead of a hindrance.
So, to conclude, small projects should be use existing frameworks. Large projects should contain their own framework.