How are unicode allocated for different languages? - unicode

It seems the most confusing issue to me.
How is the beginning of a new character recognized?
How are the codepoints allocated?
Let's take Chinese character for example.
What range of codepoints are allocated to them,
and why is it thus allocated,any reason?
EDIT:
Plz describe it in your own words,not by citation.
Or could you recommend a book that talks about Unicode systematically,which you think have made it clear(it's the most important).

The Unicode Consortium is responsible for the codepoint allocation. If you have want a new character or a code page allocated, you can apply there. See the proposal pipeline for examples.

Chapter 2 of the Unicode specification defines the general structure of Unicode, including what ranges are allocated for what kind of characters.

Take a look here for a general overview of Unicode that might be helpful: The Absolute Minimum Every Software Developer Absolutely, Positively Must Know About Unicode and Character Sets (No Excuses)

Unicode is a standard specified by the Unicode Consortium. The specification defines Unicode’s character set, the Universal Character Set (UCS), and some encodings to encode that characters, the Unicode Transformation Formats UTF-7, UTF-8, UTF-16 and UTF-32.
How is the beginning of a new character recognized?
It depends on the encoding that’s been used. UTF-16 and UTF-32 are encodings with fixed code word lengths (16 and 32 bits respectively) while UTF-7 and UTF-8 have a variable code word length (from 8 bits up to 32 bits) depending on the character point that is to be encoded.
How are the codepoints allocated? Let's take Chinese character for example. What range of codepoints are allocated to them, and why is it thus allocated,any reason?
The UCS is separated into so called character planes. The first one is Basic Latin (U+0000–U+007F, encoded like ASCII), the second is Latin-1 Supplement (U+0080–U+00FF, encoded like ISO 8859-1) and so on.

It is better to say Character Encoding instead of Codepage
A Character Encoding is a way to map some character to some data (and also vice-versa!)
As Wikipedia says:
A character encoding system consists of a code that pairs each character from a given repertoire with something else, such as a sequence of natural numbers, octets or electrical pulses, in order to facilitate the transmission of data (generally numbers and/or text) through telecommunication networks or storage of text in computers
Most popular character encodings are ASCII,UTF-16 and UTF-8
ASCII
First code-page that widely used in computers. in ANSI just one byte is allocated for each character. So ANSI could have a very limited set of characters (English letters, Numbers,...)
As I said, ASCII used videly in old operating systems like MS-DOS. But ASCII is not dead and still used. When you have a txt file with 10 characters and it is 10 bytes, you have a ASCII file!
UTF-16
In UTF-16, Two bytes is allocated of a character. So we can have 65536 different characters in UTF-16 !
Microsoft Windows uses UTF-16 internally.
UTF-8
UTF-8 is another popular way for encoding characters. it uses variable-length bytes (1byte to 4bytes) for characters. It is also compatible with ASCII because uses 1byte for ASCII characters.
Most Unix based systems uses UTF-8
Programming languages do not depend on code-pages. Maybe a specific implementation of a programming language do not support codepages (like Turbo C++)
You can use any code-page in modern programming languages. They also have some tools for converting the code-pages.
There is different Unicode versions like Utf-7,Utf-8,... You can read about them here (recommanded!) and maybe for more formal details here

Related

Understanding encoding schemes

I cannot understand some key elements of encoding:
Is ASCII only a character or it also has its encoding scheme algorithm ?
Does other windows code pages such as Latin1 have their own encoding algorithm ?
Are UTF7, 8, 16, 32 the only encoding algorithms ?
Does the UTF alghoritms are used only with the UNICODE set ?
Given the ASCII text: Hello World, if I want to convert it into Latin1 or BIG5, which encoding algorithms are being used in this process ? More specifically, does Latin1/Big5 use their own encoding alghoritm or I have to use a UTF alghoritm ?
1: Ascii is just an encoding — a really simple encoding. It's literally just the positive end of a signed byte (0...127) mapped to characters and control codes.
Refer to https://www.ascii.codes/ to see the full set and inspect the characters.
There are definitely encoding algorithms to convert ascii strings to and from strings in other encodings, but there is no compression/decompression algorithm required to write or read ascii strings like there is for utf8 or utf16, if that's what you're implying.
2: LATIN-1 is also not a compressed (usually called 'variable width') encoding, so there's no algorithm needed to get in and out of it.
See https://kb.iu.edu/d/aepu for a nice description of LATIN-1 conceptually and of each character in the set. Like a lot of encodings, its first 128 slots are just ascii. Like ascii, it's 1 byte in size, but it's an unsigned byte, so after the last ascii character (DEL/127), LATIN1 adds another 128 characters.
As with any conversion from one string encoding to another, there is an algorithm specifically tailored to that conversion.
3: Again, unicode encodings are just that — encodings. But they're all compressed except for utf32. So unless you're working with utf32 there is always a compression/decompression step required to write and read them.
Note: When working with utf32 strings there is one nonlinear oddity that has to be accounted for... combining characters. Technically that is yet another type of compression since they save space by not giving a codepoint to every possible combination of uncombined character and combining character. They "precombine" a few, but they would run out of slots very quickly if they did them all.
4: Yes. The compression/decompression algorithms for the compressed unicode encodings are just for those encodings. They would not work for any other encoding.
Think of it like zip/unzip. Unzipping anything other than a zipped file or folder would of course not work. That goes for things that are not compressed in the first place and also things that are compressed but using another compression algorithm (e.g.: rar).
I recently wrote the utf8 and utf16 compression/decompression code for a new cross-platform library being developed, and I can tell you quite confidently if you feed a Big5-encoded string into my method written specifically for decompressing utf8... not only would it not work, it might very well crash.
Re: your "Hello World" question... Refer to my answer to your second question about LATIN-1. No conversion is required to go from ascii to LATIN-1 because the first 128 characters (0...127) of LATIN-1 are ascii. If you're converting from LATIN-1 to ascii, the same is true for the lower half of LATIN-1, but if any of the characters beyond 127 are in the string, it would be what's called a "lossy"/partial conversion or an outright failure, depending on your tolerance level for lossiness. In your example, however, all of the characters in "Hello World" have the exact same values in both encodings, so it would convert perfectly, without loss, in either direction.
I know practically nothing about Big5, but regardless, don't use utf-x algos for other encodings. Each one of those is written very specifically for 1 particular encoding (or in the case of conversion: pair of encodings).
If you're curious about utf8/16 compression/decompression algorithms, the unicode website is where you should start (watch out though. they don't use the compression/decompression metaphor in their documentation):
http://unicode.org
You probably won't need anything else.
... except maybe a decent codepoint lookup tool: https://www.unicode.codes/
You can roll your own code based on the unicode documentation, or use the official unicode library:
http://site.icu-project.org/home
Hope this helps.
In general, most encoding schemes like ASCII or Latin-1 are simply big tables mapping characters to specific byte sequences. There may or may not be some specific algorithm how the creators came up with those specific character⟷byte associations, but there's generally not much more to it than that.
One of the innovations of Unicode specifically is the indirection of assigning each character a unique number first and foremost, and worrying about how to encode that number into bytes secondarily. There are a number of encoding schemes for how to do this, from the UCS and GB 18030 encodings to the most commonly used UTF-8/UTF-16 encodings. Some are largely defunct by now like UCS-2. Each one has their pros and cons in terms of space tradeoffs, ease of processing and transportability (e.g. UTF-7 for safe transport over 7-bit system like email). Unless otherwise noted, they can all encode the full set of current Unicode characters.
To convert from one encoding to another, you pretty much need to map bytes from one table to another. Meaning, if you look at the EBCDIC table and the Windows 1250 table, the characters 0xC1 and 0x41 respectively both seem to represent the same character "A", so when converting between the two encodings, you'd map those bytes as equivalent. Yes, that means there needs to be one such mapping between each possible encoding pair.
Since that is obviously rather laborious, modern converters virtually always go through Unicode as a middleman. This way each encoding only needs to be mapped to the Unicode table, and the conversion can be done with encoding A → Unicode code point → encoding B. In the end you just want to identify which characters look the same/mean the same, and change the byte representation accordingly.
A character encoding is a mapping from a sequence of characters to a sequence of bytes (in the past there were also encodings to a sequence of bits - they are falling out of fashion). Usually this mapping is one-to-one but not necessarily onto. This means there may be byte sequences that don't correspond to a character sequence in this encoding.
The domain of the mapping defines which characters can be encoded.
Now to your questions:
ASCII is both, it defines 128 characters (some of them are control codes) and how they are mapped to the byte values 0 to 127.
Each encoding may define its own set of characters and how they are mapped to bytes
no, there are others as well ASCII, ISO-8859-1, ...
Unicode uses a two step mapping: first the characters are mapped to (relatively) small integers called "code points", then these integers are mapped to a byte sequence. The first part is the same for all UTF encodings, the second step differs. Unicode has the ambition to contain all characters. This means, most characters are in the "UNICODE set".
Every character in the world has been assigned a unicode value [ numbered from 0 to ...]. It is actually an unique value. Now, it depends on an individual that how he wants to use that unicode value. He can even use it directly or can use some known encoding schemes like utf8, utf16 etc. Encoding schemes map that unicode value into some specific bit sequence [ can vary from 1 byte to 4 bytes or may be 8 in future if we get to know about all the languages of universe/aliens/multiverse ] so that it can be uniquely identified in the encoding scheme.
For example ASCII is an encoding scheme which only encodes 128 characters out of all characters. It uses one byte for every character which is equivalent to utf8 representation. GSM7 is one other format which uses 7 bit per character to encode 128 characters from unicode character list.
Utf8:
It uses 1 byte for characters whose unicode value is till 127.
Beyond this it has its own way of representing the unicode values.
Uses 2 byte for Cyrillic then 3 bytes for Hindi characters.
Utf16:
It uses 2 byte for characters whose unicode value is till 127.
and it also uses 2 byte for Cyrillic, Hindi characters.
All the utf encoding schemes fixes initial bits in specific pattern [ eg: 110|restbits] and rest bits [eg: initialbits|11001] takes the unicode value to make a unique representation.
Wikipedia on utf8, utf16, unicode will make it clear.
I coded an utf translator which converts incoming utf8 text across all languages into its equivalent utf16 text.

Two bytes of unicode letters is a myth?

I have read an article talks about text encoding. It refers that saying that a unicode letter is two bytes is a myth.
It explains that but my english is not good enugh to understand the reasons.
Kindly, any one here can explain that fact if it is true and the reasons? Please ,keep simple English as possible as you can.
It can need more, or less depending on unicode format and what character you wish to represent. At most 4 bytes per character:
Character encoding standards define not only the identity of each
character and its numeric value, or code point, but also how this
value is represented in bits.
The Unicode Standard defines three encoding forms that allow the same
data to be transmitted in a byte, word or double word oriented format
(i.e. in 8, 16 or 32-bits per code unit). All three encoding forms
encode the same common character repertoire and can be efficiently
transformed into one another without loss of data. The Unicode
Consortium fully endorses the use of any of these encoding forms as a
conformant way of implementing the Unicode Standard.
UTF-8 is popular for HTML and similar protocols. UTF-8 is a way of
transforming all Unicode characters into a variable length encoding of
bytes. It has the advantages that the Unicode characters corresponding
to the familiar ASCII set have the same byte values as ASCII, and that
Unicode characters transformed into UTF-8 can be used with much
existing software without extensive software rewrites.
UTF-16 is popular in many environments that need to balance efficient
access to characters with economical use of storage. It is reasonably
compact and all the heavily used characters fit into a single 16-bit
code unit, while all other characters are accessible via pairs of
16-bit code units.
UTF-32 is useful where memory space is no concern, but fixed width,
single code unit access to characters is desired. Each Unicode
character is encoded in a single 32-bit code unit when using UTF-32.
All three encoding forms need at most 4 bytes (or 32-bits) of data for
each character.
See http://www.unicode.org/standard/principles.html
Windows, and many legacy applications, has traditionally used 16 bits (two bytes) to represent unicode characters, but the actual standard is 21 bits (0x000000 to 0x10ffff). That's why there are so many different encodings (UTF-8 and so on). Today the most common internal representation of unicode characters inside of programs should be UTF-32 (32 bits, 4 bytes), while most are stored on disk in UTF-8 format.
For more information about the different unicode encoding schemes see this Wikipedia article: http://en.wikipedia.org/wiki/Comparison_of_Unicode_encodings

What's the difference between Unicode and UTF-8? [duplicate]

This question already has answers here:
What is the difference between UTF-8 and Unicode?
(18 answers)
Closed 6 years ago.
Consider:
Is it true that unicode=utf16?
Many are saying Unicode is a standard, not an encoding, but most editors support save as Unicode encoding actually.
As Rasmus states in his article "The difference between UTF-8 and Unicode?":
If asked the question, "What is the difference between UTF-8 and
Unicode?", would you confidently reply with a short and precise
answer? In these days of internationalization all developers should be
able to do that. I suspect many of us do not understand these concepts
as well as we should. If you feel you belong to this group, you should
read this ultra short introduction to character sets and encodings.
Actually, comparing UTF-8 and Unicode is like comparing apples and
oranges:
UTF-8 is an encoding - Unicode is a character
set
A character set is a list of characters with unique numbers (these
numbers are sometimes referred to as "code points"). For example, in
the Unicode character set, the number for A is 41.
An encoding on the other hand, is an algorithm that translates a
list of numbers to binary so it can be stored on disk. For example
UTF-8 would translate the number sequence 1, 2, 3, 4 like this:
00000001 00000010 00000011 00000100
Our data is now translated into binary and can now be saved to
disk.
All together now
Say an application reads the following from the disk:
1101000 1100101 1101100 1101100 1101111
The app knows this data represent a Unicode string encoded with
UTF-8 and must show this as text to the user. First step, is to
convert the binary data to numbers. The app uses the UTF-8 algorithm
to decode the data. In this case, the decoder returns this:
104 101 108 108 111
Since the app knows this is a Unicode string, it can assume each
number represents a character. We use the Unicode character set to
translate each number to a corresponding character. The resulting
string is "hello".
Conclusion
So when somebody asks you "What is the difference between UTF-8 and
Unicode?", you can now confidently answer short and precise:
UTF-8 (Unicode Transformation Format) and Unicode cannot be compared. UTF-8 is an encoding
used to translate numbers into binary data. Unicode is a character set
used to translate characters into numbers.
most editors support save as ‘Unicode’ encoding actually.
This is an unfortunate misnaming perpetrated by Windows.
Because Windows uses UTF-16LE encoding internally as the memory storage format for Unicode strings, it considers this to be the natural encoding of Unicode text. In the Windows world, there are ANSI strings (the system codepage on the current machine, subject to total unportability) and there are Unicode strings (stored internally as UTF-16LE).
This was all devised in the early days of Unicode, before we realised that UCS-2 wasn't enough, and before UTF-8 was invented. This is why Windows's support for UTF-8 is all-round poor.
This misguided naming scheme became part of the user interface. A text editor that uses Windows's encoding support to provide a range of encodings will automatically and inappropriately describe UTF-16LE as “Unicode”, and UTF-16BE, if provided, as “Unicode big-endian”.
(Other editors that do encodings themselves, like Notepad++, don't have this problem.)
If it makes you feel any better about it, ‘ANSI’ strings aren't based on any ANSI standard, either.
It's not that simple.
UTF-16 is a 16-bit, variable-width encoding. Simply calling something "Unicode" is ambiguous, since "Unicode" refers to an entire set of standards for character encoding. Unicode is not an encoding!
http://en.wikipedia.org/wiki/Unicode#Unicode_Transformation_Format_and_Universal_Character_Set
and of course, the obligatory Joel On Software - The Absolute Minimum Every Software Developer Absolutely, Positively Must Know About Unicode and Character Sets (No Excuses!) link.
There's a lot of misunderstanding being displayed here. Unicode isn't an encoding, but the Unicode standard is devoted primarily to encoding anyway.
ISO 10646 is the international character set you (probably) care about. It defines a mapping between a set of named characters (e.g., "Latin Capital Letter A" or "Greek small letter alpha") and a set of code points (a number assigned to each -- for example, 61 hexadecimal and 3B1 hexadecimal for those two respectively; for Unicode code points, the standard notation would be U+0061 and U+03B1).
At one time, Unicode defined its own character set, more or less as a competitor to ISO 10646. That was a 16-bit character set, but it was not UTF-16; it was known as UCS-2. It included a rather controversial technique to try to keep the number of necessary characters to a minimum (Han Unification -- basically treating Chinese, Japanese and Korean characters that were quite a bit alike as being the same character).
Since then, the Unicode consortium has tacitly admitted that that wasn't going to work, and now concentrate primarily on ways to encode the ISO 10646 character set. The primary methods are UTF-8, UTF-16 and UCS-4 (aka UTF-32). Those (except for UTF-8) also have LE (little endian) and BE (big-endian) variants.
By itself, "Unicode" could refer to almost any of the above (though we can probably eliminate the others that it shows explicitly, such as UTF-8). Unqualified use of "Unicode" probably happens the most often on Windows, where it will almost certainly refer to UTF-16. Early versions of Windows NT adopted Unicode when UCS-2 was current. After UCS-2 was declared obsolete (around Win2k, if memory serves), they switched to UTF-16, which is the most similar to UCS-2 (in fact, it's identical for characters in the "basic multilingual plane", which covers a lot, including all the characters for most Western European languages).
UTF-16 and UTF-8 are both encodings of Unicode. They are both Unicode; one is not more Unicode than the other.
Don't let an unfortunate historical artifact from Microsoft confuse you.
The development of Unicode was aimed
at creating a new standard for mapping
the characters in a great majority of
languages that are being used today,
along with other characters that are
not that essential but might be
necessary for creating the text. UTF-8
is only one of the many ways that you
can encode the files because there are
many ways you can encode the
characters inside a file into Unicode.
Source:
http://www.differencebetween.net/technology/difference-between-unicode-and-utf-8/
In addition to Trufa's comment, Unicode explicitly isn't UTF-16. When they were first looking into Unicode, it was speculated that a 16-bit integer might be enough to store any code, but in practice that turned out not to be the case. However, UTF-16 is another valid encoding of Unicode - alongside the 8-bit and 32-bit variants - and I believe is the encoding that Microsoft use in memory at runtime on the NT-derived operating systems.
Let's start from keeping in mind that data is stored as bytes; Unicode is a character set where characters are mapped to code points (unique integers), and we need something to translate these code points data into bytes. That's where UTF-8 comes in so called encoding – simple!
It's weird. Unicode is a standard, not an encoding. As it is possible to specify the endianness I guess it's effectively UTF-16 or maybe 32.
Where does this menu provide from?

What are Unicode, UTF-8, and UTF-16?

What's the basis for Unicode and why the need for UTF-8 or UTF-16?
I have researched this on Google and searched here as well, but it's not clear to me.
In VSS, when doing a file comparison, sometimes there is a message saying the two files have differing UTF's. Why would this be the case?
Please explain in simple terms.
Why do we need Unicode?
In the (not too) early days, all that existed was ASCII. This was okay, as all that would ever be needed were a few control characters, punctuation, numbers and letters like the ones in this sentence. Unfortunately, today's strange world of global intercommunication and social media was not foreseen, and it is not too unusual to see English, العربية, 汉语, עִבְרִית, ελληνικά, and ភាសាខ្មែរ in the same document (I hope I didn't break any old browsers).
But for argument's sake, let’s say Joe Average is a software developer. He insists that he will only ever need English, and as such only wants to use ASCII. This might be fine for Joe the user, but this is not fine for Joe the software developer. Approximately half the world uses non-Latin characters and using ASCII is arguably inconsiderate to these people, and on top of that, he is closing off his software to a large and growing economy.
Therefore, an encompassing character set including all languages is needed. Thus came Unicode. It assigns every character a unique number called a code point. One advantage of Unicode over other possible sets is that the first 256 code points are identical to ISO-8859-1, and hence also ASCII. In addition, the vast majority of commonly used characters are representable by only two bytes, in a region called the Basic Multilingual Plane (BMP). Now a character encoding is needed to access this character set, and as the question asks, I will concentrate on UTF-8 and UTF-16.
Memory considerations
So how many bytes give access to what characters in these encodings?
UTF-8:
1 byte: Standard ASCII
2 bytes: Arabic, Hebrew, most European scripts (most notably excluding Georgian)
3 bytes: BMP
4 bytes: All Unicode characters
UTF-16:
2 bytes: BMP
4 bytes: All Unicode characters
It's worth mentioning now that characters not in the BMP include ancient scripts, mathematical symbols, musical symbols, and rarer Chinese, Japanese, and Korean (CJK) characters.
If you'll be working mostly with ASCII characters, then UTF-8 is certainly more memory efficient. However, if you're working mostly with non-European scripts, using UTF-8 could be up to 1.5 times less memory efficient than UTF-16. When dealing with large amounts of text, such as large web-pages or lengthy word documents, this could impact performance.
Encoding basics
Note: If you know how UTF-8 and UTF-16 are encoded, skip to the next section for practical applications.
UTF-8: For the standard ASCII (0-127) characters, the UTF-8 codes are identical. This makes UTF-8 ideal if backwards compatibility is required with existing ASCII text. Other characters require anywhere from 2-4 bytes. This is done by reserving some bits in each of these bytes to indicate that it is part of a multi-byte character. In particular, the first bit of each byte is 1 to avoid clashing with the ASCII characters.
UTF-16: For valid BMP characters, the UTF-16 representation is simply its code point. However, for non-BMP characters UTF-16 introduces surrogate pairs. In this case a combination of two two-byte portions map to a non-BMP character. These two-byte portions come from the BMP numeric range, but are guaranteed by the Unicode standard to be invalid as BMP characters. In addition, since UTF-16 has two bytes as its basic unit, it is affected by endianness. To compensate, a reserved byte order mark can be placed at the beginning of a data stream which indicates endianness. Thus, if you are reading UTF-16 input, and no endianness is specified, you must check for this.
As can be seen, UTF-8 and UTF-16 are nowhere near compatible with each other. So if you're doing I/O, make sure you know which encoding you are using! For further details on these encodings, please see the UTF FAQ.
Practical programming considerations
Character and string data types: How are they encoded in the programming language? If they are raw bytes, the minute you try to output non-ASCII characters, you may run into a few problems. Also, even if the character type is based on a UTF, that doesn't mean the strings are proper UTF. They may allow byte sequences that are illegal. Generally, you'll have to use a library that supports UTF, such as ICU for C, C++ and Java. In any case, if you want to input/output something other than the default encoding, you will have to convert it first.
Recommended, default, and dominant encodings: When given a choice of which UTF to use, it is usually best to follow recommended standards for the environment you are working in. For example, UTF-8 is dominant on the web, and since HTML5, it has been the recommended encoding. Conversely, both .NET and Java environments are founded on a UTF-16 character type. Confusingly (and incorrectly), references are often made to the "Unicode encoding", which usually refers to the dominant UTF encoding in a given environment.
Library support: The libraries you are using support some kind of encoding. Which one? Do they support the corner cases? Since necessity is the mother of invention, UTF-8 libraries will generally support 4-byte characters properly, since 1, 2, and even 3 byte characters can occur frequently. However, not all purported UTF-16 libraries support surrogate pairs properly since they occur very rarely.
Counting characters: There exist combining characters in Unicode. For example, the code point U+006E (n), and U+0303 (a combining tilde) forms ñ, but the code point U+00F1 forms ñ. They should look identical, but a simple counting algorithm will return 2 for the first example, and 1 for the latter. This isn't necessarily wrong, but it may not be the desired outcome either.
Comparing for equality: A, А, and Α look the same, but they're Latin, Cyrillic, and Greek respectively. You also have cases like C and Ⅽ. One is a letter, and the other is a Roman numeral. In addition, we have the combining characters to consider as well. For more information, see Duplicate characters in Unicode.
Surrogate pairs: These come up often enough on Stack Overflow, so I'll just provide some example links:
Getting string length
Removing surrogate pairs
Palindrome checking
Unicode
is a set of characters used around the world
UTF-8
a character encoding capable of encoding all possible characters (called code points) in Unicode.
code unit is 8-bits
use one to four code units to encode Unicode
00100100 for "$" (one 8-bits);11000010 10100010 for "¢" (two 8-bits);11100010 10000010 10101100 for "€" (three 8-bits)
UTF-16
another character encoding
code unit is 16-bits
use one to two code units to encode Unicode
00000000 00100100 for "$" (one 16-bits);11011000 01010010 11011111 01100010 for "𤭢" (two 16-bits)
Unicode is a fairly complex standard. Don’t be too afraid, but be
prepared for some work! [2]
Because a credible resource is always needed, but the official report is massive, I suggest reading the following:
The Absolute Minimum Every Software Developer Absolutely, Positively Must Know About Unicode and Character Sets (No Excuses!) An introduction by Joel Spolsky, Stack Exchange CEO.
To the BMP and beyond! A tutorial by Eric Muller, Technical Director then, Vice President later, at The Unicode Consortium (the first 20 slides and you are done)
A brief explanation:
Computers read bytes and people read characters, so we use encoding standards to map characters to bytes. ASCII was the first widely used standard, but covers only Latin (seven bits/character can represent 128 different characters). Unicode is a standard with the goal to cover all possible characters in the world (can hold up to 1,114,112 characters, meaning 21 bits/character maximum. Current Unicode 8.0 specifies 120,737 characters in total, and that's all).
The main difference is that an ASCII character can fit to a byte (eight bits), but most Unicode characters cannot. So encoding forms/schemes (like UTF-8 and UTF-16) are used, and the character model goes like this:
Every character holds an enumerated position from 0 to 1,114,111 (hex: 0-10FFFF) called a code point.
An encoding form maps a code point to a code unit sequence. A code unit is the way you want characters to be organized in memory, 8-bit units, 16-bit units and so on. UTF-8 uses one to four units of eight bits, and UTF-16 uses one or two units of 16 bits, to cover the entire Unicode of 21 bits maximum. Units use prefixes so that character boundaries can be spotted, and more units mean more prefixes that occupy bits. So, although UTF-8 uses one byte for the Latin script, it needs three bytes for later scripts inside a Basic Multilingual Plane, while UTF-16 uses two bytes for all these. And that's their main difference.
Lastly, an encoding scheme (like UTF-16BE or UTF-16LE) maps (serializes) a code unit sequence to a byte sequence.
character: π
code point: U+03C0
encoding forms (code units):
      UTF-8: CF 80
      UTF-16: 03C0
encoding schemes (bytes):
      UTF-8: CF 80
      UTF-16BE: 03 C0
      UTF-16LE: C0 03
Tip: a hexadecimal digit represents four bits, so a two-digit hex number represents a byte.
Also take a look at plane maps on Wikipedia to get a feeling of the character set layout.
The article What every programmer absolutely, positively needs to know about encodings and character sets to work with text explains all the details.
Writing to buffer
if you write to a 4 byte buffer, symbol あ with UTF8 encoding, your binary will look like this:
00000000 11100011 10000001 10000010
if you write to a 4 byte buffer, symbol あ with UTF16 encoding, your binary will look like this:
00000000 00000000 00110000 01000010
As you can see, depending on what language you would use in your content this will effect your memory accordingly.
Example: For this particular symbol: あ UTF16 encoding is more efficient since we have 2 spare bytes to use for the next symbol. But it doesn't mean that you must use UTF16 for Japan alphabet.
Reading from buffer
Now if you want to read the above bytes, you have to know in what encoding it was written to and decode it back correctly.
e.g. If you decode this :
00000000 11100011 10000001 10000010
into UTF16 encoding, you will end up with 臣 not あ
Note: Encoding and Unicode are two different things. Unicode is the big (table) with each symbol mapped to a unique code point. e.g. あ symbol (letter) has a (code point): 30 42 (hex). Encoding on the other hand, is an algorithm that converts symbols to more appropriate way, when storing to hardware.
30 42 (hex) - > UTF8 encoding - > E3 81 82 (hex), which is above result in binary.
30 42 (hex) - > UTF16 encoding - > 30 42 (hex), which is above result in binary.
Originally, Unicode was intended to have a fixed-width 16-bit encoding (UCS-2). Early adopters of Unicode, like Java and Windows NT, built their libraries around 16-bit strings.
Later, the scope of Unicode was expanded to include historical characters, which would require more than the 65,536 code points a 16-bit encoding would support. To allow the additional characters to be represented on platforms that had used UCS-2, the UTF-16 encoding was introduced. It uses "surrogate pairs" to represent characters in the supplementary planes.
Meanwhile, a lot of older software and network protocols were using 8-bit strings. UTF-8 was made so these systems could support Unicode without having to use wide characters. It's backwards-compatible with 7-bit ASCII.
Unicode is a standard which maps the characters in all languages to a particular numeric value called a code point. The reason it does this is that it allows different encodings to be possible using the same set of code points.
UTF-8 and UTF-16 are two such encodings. They take code points as input and encodes them using some well-defined formula to produce the encoded string.
Choosing a particular encoding depends upon your requirements. Different encodings have different memory requirements and depending upon the characters that you will be dealing with, you should choose the encoding which uses the least sequences of bytes to encode those characters.
For more in-depth details about Unicode, UTF-8 and UTF-16, you can check out this article,
What every programmer should know about Unicode
Why Unicode? Because ASCII has just 127 characters. Those from 128 to 255 differ in different countries, and that's why there are code pages. So they said: let’s have up to 1114111 characters.
So how do you store the highest code point? You'll need to store it using 21 bits, so you'll use a DWORD having 32 bits with 11 bits wasted. So if you use a DWORD to store a Unicode character, it is the easiest way, because the value in your DWORD matches exactly the code point.
But DWORD arrays are of course larger than WORD arrays and of course even larger than BYTE arrays. That's why there is not only UTF-32, but also UTF-16. But UTF-16 means a WORD stream, and a WORD has 16 bits, so how can the highest code point 1114111 fit into a WORD? It cannot!
So they put everything higher than 65535 into a DWORD which they call a surrogate-pair. Such a surrogate-pair are two WORDS and can get detected by looking at the first 6 bits.
So what about UTF-8? It is a byte array or byte stream, but how can the highest code point 1114111 fit into a byte? It cannot! Okay, so they put in also a DWORD right? Or possibly a WORD, right? Almost right!
They invented utf-8 sequences which means that every code point higher than 127 must get encoded into a 2-byte, 3-byte or 4-byte sequence. Wow! But how can we detect such sequences? Well, everything up to 127 is ASCII and is a single byte. What starts with 110 is a two-byte sequence, what starts with 1110 is a three-byte sequence and what starts with 11110 is a four-byte sequence. The remaining bits of these so called "startbytes" belong to the code point.
Now depending on the sequence, following bytes must follow. A following byte starts with 10, and the remaining bits are 6 bits of payload bits and belong to the code point. Concatenate the payload bits of the startbyte and the following byte/s and you'll have the code point. That's all the magic of UTF-8.
ASCII - Software allocates only 8 bit byte in memory for a given character. It works well for English and adopted (loanwords like façade) characters as their corresponding decimal values falls below 128 in the decimal value. Example C program.
UTF-8 - Software allocates one to four variable 8-bit bytes for a given character. What is meant by a variable here? Let us say you are sending the character 'A' through your HTML pages in the browser (HTML is UTF-8), the corresponding decimal value of A is 65, when you convert it into decimal it becomes 01000010. This requires only one byte, and one byte memory is allocated even for special adopted English characters like 'ç' in the word façade. However, when you want to store European characters, it requires two bytes, so you need UTF-8. However, when you go for Asian characters, you require minimum of two bytes and maximum of four bytes. Similarly, emojis require three to four bytes. UTF-8 will solve all your needs.
UTF-16 will allocate minimum 2 bytes and maximum of 4 bytes per character, it will not allocate 1 or 3 bytes. Each character is either represented in 16 bit or 32 bit.
Then why does UTF-16 exist? Originally, Unicode was 16 bit not 8 bit. Java adopted the original version of UTF-16.
In a nutshell, you don't need UTF-16 anywhere unless it has been already been adopted by the language or platform you are working on.
Java program invoked by web browsers uses UTF-16, but the web browser sends characters using UTF-8.
UTF stands for stands for Unicode Transformation Format. Basically, in today's world there are scripts written in hundreds of other languages, formats not covered by the basic ASCII used earlier. Hence, UTF came into existence.
UTF-8 has character encoding capabilities and its code unit is eight bits while that for UTF-16 it is 16 bits.

Smallest Unicode encodings for different languages?

What are the typical average bytes-per-character rates for different unicode encodings in different languages?
E.g. if I wanted the smallest number of bytes to encode some english text, then on average UTF-8 would be 1-byte per character and UTF-16 would be 2 so I'd pick UTF-8.
If I wanted some Korean text, then UTF-16 might average about 2 per character but UTF-8 might average about 3 (I don't know, I'm just making up some illustrative numbers here).
Which encodings yield the smallest storage requirements for different languages and character sets?
For any given language, your bytes-per-character rates are fairly constant, because most languages are allocated to contiguous code pages. The big exception is accented Latin characters, which are allocated higher in the code space than the unaccented forms. I don't have hard numbers for these.
For languages with contiguous character allocation, there is a table with detailed numbers for various languages on Wikipedia. In general, UTF-8 works well for most small character sets (except the ones allocated on high code pages), and UTF-16 is great for two-byte character sets.
If you need denser compression, you may also want to look at Unicode Technical Note 14, which compares some special-purpose encodings designed to reduce data size for a variety of languages. But these techniques aren't especially common.
If you're really worried about string/character size, have you thought about compressing them? That would automatically reduce the string to it's 'minimal' encoding. It's a layer of headache, especially if you want to do it in memory, and there are plenty of cases in which it wouldn't buy you anything, but encoding, especially, tend to be too general purpose to the level of compactness you seem to be aiming for.
UTF8 is best for any character-set where characters are primarily below U+0800. Otherwise UTF16.
That is, UTF8 for Latin, Greek, Cyrillic, Hebrew and Arabic and a few others. In langs other than Latin, characters will take up the same space as they would in UTF16, but you'll save bytes on punctuation and spacing.
In UTF-16, all the languages that matter (i.e. anything but klingons, elven and other strange things) will be encoded into 2 byte chars.
So the question is to find the languages that will have glyphs that will be 2-bytes or 1-byte sized characters long.
In the Wikipedia page on UTF-8:
http://en.wikipedia.org/wiki/Utf-8
We see that a character with an unicode index of 0x0800 or more will be at least 3 bytes long in UTF-8.
Knowing that, you just need to look at the code charts on unicode: http://www.unicode.org/charts/
for the languages that comply to your requirements.
:-)
Now, note that, depending on the framework you're using, the choice could well be not yours to do:
On Windows API, Unicode is handled by wchar_t chars, and is UTF-16
On Linux, Unicode is handled by char, and is UTF-8
Java is internally UTF-16, as are most compliant XML parsers
I was told (some tech meeting I was not interested on... sorry...) that UTF-8 was the encoding of choices on Databases.
So, pick up your poison...
:-)
I don't know exact figures, but for Japanese Shift_JIS averages fewer bytes per character than UTF-8, and so does EUC-JP, since they're optimised for Japanese text. However, they don't cover the same space of code points as Unicode, so they might not be correct answers to your question.
UTF-16 is better than UTF-8 for Japanese characters (2 bytes per char as opposed to 3), but worse than UTF-8 if there's a lot of 7-bit chars. It depends on the context - technical text is more likely to contain a lot of chars in the 1-byte range. A classical Japanese text might not have any.
Note that for transport, the encoding doesn't matter much if you can zip (gzip, bz2) the data. Code points for an alphabet in Unicode are close together, so you'd expect common prefixes with very short representations in the compressed data.
UTF-8 is usually good for representation in memory, since it's often more compact than UTF-32 or UTF-16, and is compatible with functions on char* which 'expect' ASCII or ISO-8859-1 NUL-terminated strings. It's useless if you need random access to characters by index, though.
If you don't care about non-BMP characters, UCS-2 is always 2 bytes per character and so offers random access. But that depends what you mean by 'Unicode'.
UTF-8
There is a very good article about unicode on JoelOnSoftware:
The Absolute Minimum Every Software Developer Absolutely, Positively Must Know About Unicode and Character Sets (No Excuses!)