Question on critical section algorithm - operating-system

The Operating System Concepts 6th edition present one trival algorithm to implementate ciritical section.
do{
while (turn != i);
critical section
trun = j;
remainder section
} while(1);
Note,Pi is the process with identifier i,Pj is the process with identifier j.To simlify the question,the book limit the i,j to 0 and 1,the two processes constriant enviroment.
Question1 is,dose this algorithm voilate the Progress requirement which is one of the three requirements to ciritical section solution?
In my opinion,when Pi is in its remainder section,it cannot participate in the decision on whether Pj can enter the critical section.Then it is bound to the requirement.
Or my understanding of progress requirement is totally wrong.So because if Pi retired from the remainder section,It could not get into the cirtical section immediate,this alg violate the rule.
Question2,
If turn == 0 and P1 is ready to enter
itscritical section,P1 cannot do
so,even thought P0 may be in its
remainder section
Whats the meaning of this statement?As far as I could think,I could not understand why turn == 0 and p0 be in its remainder section could be exist concurrently...
So is this statement wrong?

Suppose that turn = 0 initially. P0 does its critical section and sets turn = 1. Now, P1 must execute its critical section before P0 may execute its one again. But just because both threads have a critical section doesn't mean that they're going to want to alternate their use of it in this way — in fact, P1 may never take its turn. (And in the general case, you can't determine this at compile time.)
So basically the problem is that the threads are forced to alternate their turns, even if one of them actually doesn't want to enter its critical section for an indefinitely long time.
By the way, your answer to Question 1 is correct. The algorithm doesn't fail the Progress condition, it fails the Bounded Waiting condition.

Related

A question about Interrupt cycle FGI and FGO flipflops conditions - Basic Computer Organization and design

Computer System Architecture - Morris Mano In chapter 5 section 7 figure 5-13
When IEN it checks whether "FGI" or "FGO" are set to 1 then an interrupt cycle happens, but as I know is when FGI = 1 it means that information in INPR cannot be changed, and FGO is the reverse to that which means that when FGO is set to 1 then information in AC will be transferred to OUTR 'OUTR can be changed' so the question here shouldn't the condition of applying interrupt cycle happen when "FGI" = 0 or "FGO" = 1 since INPR or OUTR can be changed under these conditions which now make since to execute an interrupt?
Either flag being 1 logically means a device is "ready", but what "ready" means differs for input and for output devices.  In either case, flag being 1 means that the processor can or should now take action.
FGI=1 means the input device is ready, but that really means a new input is available (e.g. the user typed a key on a keyboard) and the processor should accept it.  FGO=1 prevents the input device(s) from overwriting a prior input held in INPR that the processor hasn't accepted yet. When the processor accepts the input, FGI goes to 0 unlocking the INPR register, and that allows the input device to write again, which it will eventually do when the user presses another key (sending FGI back to 1 to signal the processor).
FGO=1 means ready for output, which really means the last output has been fully accepted by the device, so the OUTR register is unlocked for the processor to write a new data (character for the console).  FGO=0 prevents the processor from writing OUTR as the output device hasn't accepted the last one yet.
The interrupt service routine should check each flag, and if FGI=1 then accept an input (INPR->AC) and move it into a buffer for the user program to read when it is ready. Whereas if FGO=1, then move an output character from memory buffer into the AC, and then do AC->OUTR, also lowering FGO to 0, which will preclude the processor writing until that data has been accepted by the device.
So, FGI=0 means that the processor has accepted the prior INPR value provided by the input device, and there is no new character as yet but the register is unlocked so the device can write at will.
FGO=0 means that the processor has written a value to the OUTR register, but the output device hasn't accepted that yet, so the register should be considered locked.

Bounded-Waiting Mutual Exclusion with Compare-and-Swap

I added comments to each line to the best of my understanding, but I still don't get why we set waiting[j] = false; at the end without running process j's critical section. In my opinion, waiting[j] = false; should be replaced with i = j; so when it loops again, we run process j's critical section. Or else we'll always be running process i's critical section!
For a process to enter its critical section, waiting[i] must be false, but waiting[i] can only be set to false if a process is leaving its critical section by calling waiting[j] = false, which I take to mean that now process j can enter its critical section prompting process i to wait. I'm still learning these concepts so I'm not 100% sure. Abraham and Silberschatz 9th edition does not do a very thorough job of explaining these algorithms.
Validity of the Algorithm
First, it is important to note that this algorithm solves the critical section problem only when there are two processes (here they are referred to as process 0 and process 1).
Next, as per the convention in Operating System Concepts by Abraham and Silberschatz . Peter B Galvin . Gerge Gagne, i refers to one of the processes amongst 0 and 1 and j refers to the other process.
Mapping of right code to right process
Having said that, it must be noted that this code is for the process i. The code for process j would be obtained by interchanging i and j in the given code. (In my opinion this is what caused confusion to you, since you said the following)
should be replaced with i = j; so when it loops again, we run process j's critical section. Or else we'll always be running process i's critical section!
Finally, consequences of waiting[j] = false (which happens in Process i)
Now, both these codes would execute as two different processes in a system. So as soon as you set waiting[j] = false in the last line of Process i following events occur:
The condition in while(waiting[j] && key == 1) for the code of Process j (Note that the code for Process j is obtained by replacing i with j as explained in the previous heading of Mapping of right code to right process) turns out to be false and therefore Process j resumes it's execution by entering the critical section.
Meanwhile, Process i loops back into the outermost while(true) loop, setting waiting[i] to true, key to 1 and waiting by looping over in the while(waiting[i] && key == 1) loop.

Setting up openai gym

I've been given a task to set up an openai toy gym which can only be solved by an agent with memory. I've been given an example with two doors, and at time t = 0 I'm shown either 1 or -1. At t = 1 I can move to correct door and open it.
Does anyone know how I would go about starting out? I want to show that a2c or ppo can solve this using an lstm policy. How do I go about setting up environment, etc?
To create a new environment in gym format, it should have the 5 functions mentioned in the gym.core file.
https://github.com/openai/gym/blob/e689f93a425d97489e590bba0a7d4518de0dcc03/gym/core.py#L11-L35
To lay this down in steps-
Define observation space and action space for your environment, preferably using gym.spaces module.
Write down the step function which performs agent's action and returns a 4 tuple containing - next set of observations from the environment , reward ,
done - a boolean indicating whether the episode is over , and some extra info if you want.
Write a reset function for the environment to reinitialise the episode to a random start state and return a 4 tuple similar to step.
These functions are enough to be able to run an RL agent on your environment.
You can skip the render, seed and close functions if you want.
For the task you have defined,you can model the observation and action space using Discrete(2). 0 for first door and 1 for second door.
Reset would return in it's observation which door has the reward.
Then agent would choose either of the door - 0 or 1.
Then perform a environment step by calling step(action), which will return agent's reward and done flag as true - signifying that the episode is over.
Frankly, the problem you describe seems too simple to accomplish for any reinforcement learning algorithm, but I assume you have provided that as an example.
Remembering for longer horizons is usually harder.
You can read their documentation and toy environments to understand how to create one.

CJ1W-CT021 Card Error Omron PLC

I got this error on a CJ1W-CT021 card. It happen all of a sudden after its been running the program for some time. How i found it was by going to the IO Table and Unit Set up. Clicked on parameters for that card and found two settings in red.
Output Control Mode and And/Or Counter Output Patterns. This was there reading
Output Control Mode = 0x40 No Applicable Set Data
And/Or Counter Output Patterns = 0x64 No Applicable Set Data
no idea on how or why these would change they should of been
Output Control Mode = Range Mode
And/Or Counter Output Patterns = Logically Or
I have added some new code, but nothing big or really even used as i had the outputs of the new rungs jumped out. One thing i thought might cause this is every cycle of the program it was checking the value of an encoder connected to this card. Maybe checking it too offten? Anyhow if anyone has any idea what these do or how they would change please post.
Thanks
Glen
EDIT.. I wanted to add the bits i used, dont think any are part of this cards internal io but i may be wrong?
Work bits 66.01 - 66.06 , 60.02 - 60.07 , 160.12, 160.01 - 160.04, 161.02, 161.03
and
Data Bits (D)20720, 20500, 20600, 20000, 20590, 20040
I would check section 4-1 through 4-2-4 of the CT021 manual - make sure you aren't writing to reserved memory locations used for configuration data of the CT021 unit.
EDIT:
1) Check Page 26 of the above manual to see the location of the machine switch settings. The bottom dial sets the '1's digit and the top dial sets the '10's digit (ie machine number can be 0-99);
2) Per page 94, D-Memory is allocated from D20000 + (N X 100) (400 Words) where N is equal to the machine number.
I would guess that your machine number is set to 0 (ie: both dials at '0'), 5, or 6. In the case of machine number '0', this would make the reserved DM range D20000 -> D20399. In this case (see pages 97, 105) D20000 would contain configuration data for Output Control Mode (bits 00-07) and Counter Output Patterns (bits 08-15). It looks like you are writing 0x6440 to D20000 (or D20500, D20600 for machine number 5 or 6, respectively) and are corrupting the configuration data.
If your machine number is 0 then stay away from D20000-D20399 unless you are directly trying to modify the counter's configuration state (ie: don't use them in your program!).
If the machine number is 1 then likewise for D20100-D20499, etc. If you have multiple counters they can overlap ranges so they should always be set with machine numbers which are 4 apart from each other.

What is a Flag in CX-Programmer?

During the reading of PLC documentation (Omron CP1L PLC and CX-Programmer), there are some missing explanation. For example, it defines "Flag" as "a bit that serves as an interface between in*struction", does that mean flag is some sort of conditional Power Flow?
It gets more confusing with the terms "Differential Up/Down", "Carry Flag"? What are flags and what do they do in the ladder logic? Are they a simple or instruction to use or just a concept that I don't really need to program in ladder?
[EDITED]
Where to add / modify / delete the flag in an instruction? I open up the edit but flag isn't there.
Ok, this is a better question.
PLCs are like any program - data is stored as different types. Think of flags as interchangeable with the term "bit", "boolean", etc. They are very important.
If you have CX-Programmer, a much better place to get information is the Instruction Reference (Help --> Instruction Reference --> yourPLC). These show time diagrams of most of the instructions and how each of the parameters and flags operate.
For example, a basic timer (TIM) works by assigning it a value. If you use a BCD type 100ms timer and assign its SV (setpoint value) a BCD value of 300 then you have created a timer with a 30 second limit (300 x 100ms). When the timer turns on it will begin counting and the PV (process value) will start from 300 and count down. When the value reaches zero the timer's flag turns ON to indicate that it has expired. If the timer's number is, say T100 then you can use T100 as a contact in another rung of logic - it will be true when the timer's execution conditions are TRUE and the timer has expired.
Differentials (UP/DOWN) are special flags which are true for only one PLC scan (ie: they are true for one execution cycle only) when their input conditions change from FALSE to TRUE (ie:OFF to ON) for UP differentials, and TRUE to FALSE (ie:ON to OFF) for DOWN differentials. You would use differentials in cases where you wanted to perform an action the moment a given condition changes.
Flags can be used for almost anything. You can use them as general booleans in your own programs, they can be parts of certain operations (ie: the CY (carry) flag is used on arithmetic operations which result in a carry - other flags are used to indicate overflows or div/0 errors, etc).
Edit again : (to answer extended question).
A basic timer's completion flag is a contact with its number. Say I have a 100ms timer, T100, which turns on when contact 10.00 is on:
10.00 ___
|-----| |---------------------------------------|TIM|
|100|
| |
|#20|
|___|
Now, once 10.00 has been ON for two seconds, the timer will elapse and the flag for timer 100, T100, will turn ON. If I had another rung where
| T100 W15.00
|-----| |-----------------------------------( )
Then work bit W15.00 would be turned on when the timer elapsed and would remain on so long as the timer's input condition remained satisfied (ie: so long as 10.00 remains ON). Flags work in different ways for different things, however. Each operation can use them in different ways.
The example from the Omron Instruction Reference (Help -> Instruction Reference -> [select PLC]) looks like this :
Well very good explanation with example and the flags value can be found in memory area it is pure binary either 0 or 1, as i was read the documentation work-bit memory location changes as per timer type e.g TIM/TIMX or TIMH or TIMHX, both are BCD timers but unit for the timer changes.